摘要:
A semiconductor device capable of preventing defective embedding of an insulator and improving the withstand voltage (dielectric strength) of an element isolation region is obtained. This semiconductor device comprises a semiconductor substrate having a main surface and an element isolation trench formed on the main surface of the semiconductor device, while the trench width of an upper end of the element isolation trench is larger than the trench width of a bottom surface and the length of a side surface located between the upper end and an end of the bottom surface is larger than the length of a straight line connecting the upper end and the end of the bottom surface. Thus, the element isolation trench is so formed that the trench width of the upper end is larger than the trench width of the bottom surface, whereby an insulator can be readily embedded in the element isolation trench. Thus, the insulator can be prevented from defective embedding. Further, the element isolation trench is so formed that the length of the side surface located between the upper end and the end of the bottom surface is larger than the length of the straight line connecting the upper end and the end of the bottom surface, thereby improving the withstand voltage of the element isolation region as compared with a case of forming the side surface located between the upper end and the end of the bottom surface in a tapered manner.
摘要:
A method for manufacturing a semiconductor device that forms a connection hole with high electric reliability even when the semiconductor device is designed to be highly integrated. The semiconductor device includes a lower layer wiring and an interlayer insulation film, which is formed on the lower layer wiring and has a connection hole connected with the lower layer wiring. The method includes forming the connection hole by etching the interlayer insulation film. The connection hole is formed by etching part of the lower layer wiring under a first etching condition through physical reaction in at least the vicinity of the lower layer wiring, and by etching part of the interlayer insulation film under a second etching condition that guarantees a selective ratio relative to the lower layer wiring.
摘要:
The first polysilicon film is formed on the semiconductor substrate with the gate insulation film between them. The second silicon nitride film with the first opening is further formed and the first polysilicon film is etched using the second silicon nitride film as a mask. Then, the spacer film with the second opening is formed at the first opening. The oxidation prevention layer is formed through the first anneal processing performed in ammonia atmosphere. Then, the source region, the source line, the source line cap film, the floating gate, the tunnel insulation film, the control gate, and the drain region are formed.
摘要:
A method for controlling an electroporation apparatus for use in an animal such as human and a non-human animal, the method comprising a step of applying a voltage to an electrode of the electroporation apparatus placed in/on a biological sample of the animal in the presence of a nucleic acid construct capable of inhibiting the expression of a gene in the animal. In this manner, a nucleic acid construct can be introduced into a cell of a living body with good efficiency.
摘要:
The invention is to prevent dielectric breakdown of a capacitor in a semiconductor device having the capacitor and a MOS transistor formed on a same semiconductor substrate. A SiO2 film that is to be a gate insulation film of a high voltage MOS transistor is formed on a whole surface of a P-type semiconductor substrate. A photoresist layer is selectively formed in a high voltage MOS transistor formation region and on a part of a SiO2 film covering edges of trench isolation films adjacent to a capacitor formation region, and the SiO2 film is removed by etching using this photoresist layer as a mask. Since the photoresist layer functions as a mask in this etching, the edges of the trench isolation films adjacent to the capacitor are not cut too deep. The SiO2 film remaining in this etching and a SiO2 film to be formed thereafter form a capacitor insulation film.
摘要:
The invention is to prevent dielectric breakdown of a capacitor in a semiconductor device having the capacitor and a MOS transistor formed on a same semiconductor substrate. A SiO2 film that is to be a gate insulation film of a high voltage MOS transistor is formed on a whole surface of a P-type semiconductor substrate. A photoresist layer is selectively formed in a high voltage MOS transistor formation region and on a part of a SiO2 film covering edges of trench isolation films adjacent to a capacitor formation region, and the SiO2 film is removed by etching using this photoresist layer as a mask. Since the photoresist layer functions as a mask in this etching, the edges of the trench isolation films adjacent to the capacitor are not cut too deep. The SiO2 film remaining in this etching and a SiO2 film to be formed thereafter form a capacitor insulation film.
摘要:
A method to quantitatively detect an optimum endpoint of dressing of a polishing pad with a non-destructive monitoring of a surface of the polishing pad is offered. The polishing pad is dressed for a predetermined period, and roughness of the surface of the polishing pad is measured with an optical measurement device made of a laser focus displacement meter. Then a characteristic curve representing a correlation between surface roughness of the polishing pad and dressing time is obtained. A gradient of the surface roughness versus dressing time characteristic curve is obtained. Dressing is stopped when the gradient reaches a predetermined value of gradient. These steps are repeated until the gradient of the surface roughness versus dressing time characteristic curve reaches the predetermined value of gradient.
摘要:
A method to quantitatively detect an optimum endpoint of dressing of a polishing pad with a non-destructive monitoring of a surface of the polishing pad is offered. The polishing pad is dressed for a predetermined period, and roughness of the surface of the polishing pad is measured with an optical measurement device made of a laser focus displacement meter. Then a characteristic curve representing a correlation between surface roughness of the polishing pad and dressing time is obtained. A gradient of the surface roughness versus dressing time characteristic curve is obtained. Dressing is stopped when the gradient reaches a predetermined value of gradient. These steps are repeated until the gradient of the surface roughness versus dressing time characteristic curve reaches the predetermined value of gradient.