摘要:
Dispersion of load may be kept within an allowance even when a plurality of probes in a large area are pressed in batch by pressing the probes provided in a membrane to a wafer by applying a pressure load to a plurality of places of a plane of pressure members on the side opposite from the wafer in a probe test step/burn-in test step which is one of semiconductor device manufacturing steps. It is then possible to provide semiconductor devices and a manufacturing method thereof which enhance the reliability and productivity of the semiconductor devices by probing a large number of integrated circuits or a large size integrated circuit in the same time.
摘要:
Dispersion of a load may be kept within a predetermined allowance even when a plurality of probes in a large area are pressed in batch by pressing the probes provided in a membrane against a wafer by applying a pressure load to a plurality of places on a plane of the pressure members on the side opposite the wafer in a probe test step, burn-in test step which represent typical semiconductor device manufacturing steps. It is then possible to provide semiconductor devices and a manufacturing method thereof which enhance the reliability and productivity of the semiconductor devices by probing a large number of integrated circuits or a large size integrated circuit at the same time.
摘要:
Dispersion of load may be kept within an allowance even when a plurality of probes in a large area are pressed in batch by pressing the probes provided in a membrane to a wafer by applying a pressure load to a plurality of places of a plane of pressure members on the side opposite from the wafer in a probe test step/burn-in test step which is one of semiconductor device manufacturing steps. It is then possible to provide semiconductor devices and a manufacturing method thereof which enhance the reliability and productivity of the semiconductor devices by probing a large number of integrated circuits or a large size integrated circuit in the same time.
摘要:
Dispersion of load may be kept within an allowance even when a plurality of probes in a large area are pressed in batch by pressing the probes provided in a membrane to a wafer by applying a pressure load to a plurality of places of a plane of pressure members on the side opposite from the wafer in a probe test step/burn-in test step which is one of semiconductor device manufacturing steps. It is then possible to provide semiconductor devices and a manufacturing method thereof which enhance the reliability and productivity of the semiconductor devices by probing a large number of integrated circuits or a large size integrated circuit in the same time.
摘要:
The fabrication of a semiconductor integrated circuit device involves testing using a pushing mechanism that is constructed by forming, over the upper surface of a thin film probe, a reinforcing material having a linear expansion coefficient (thermal expansion coefficient) almost equal to that of a wafer to be tested; forming a groove in the reinforcing material above a contact terminal; placing an elastomer in the groove so that a predetermined amount projects out of the groove; and disposing a pusher and another elastomer to sandwich the pusher between the elastomers. With the use of such a probe, it is possible to improve the throughput of wafer-level electrical testing of a semiconductor integrated circuit.
摘要:
The fabrication of a semiconductor integrated circuit device involves testing using a pushing mechanism that is constructed by forming, over the upper surface of a thin film probe, a reinforcing material having a linear expansion coefficient (thermal expansion coefficient) almost equal to that of a wafer to be tested; forming a groove in the reinforcing material above a contact terminal; placing an elastomer in the groove so that a predetermined amount projects out of the groove; and disposing a pusher and another elastomer to sandwich the pusher between the elastomers. With the use of such a probe, it is possible to improve the throughput of wafer-level electrical testing of a semiconductor integrated circuit.
摘要:
The fabrication of a semiconductor integrated circuit device involves testing using a pushing mechanism that is constructed by forming, over the upper surface of a thin film probe, a reinforcing material having a linear expansion coefficient (thermal expansion coefficient) almost equal to that of a wafer to be tested; forming a groove in the reinforcing material above a contact terminal; placing an elastomer in the groove so that a predetermined amount projects out of the groove; and disposing a pusher and another elastomer to sandwich the pusher between the elastomers. With the use of such a probe, it is possible to improve the throughput of wafer-level electrical testing of a semiconductor integrated circuit.
摘要:
A testing apparatus and a fabricating method of a semiconductor integrated circuit device for reducing the fabrication cost by placing, in the wafer level burn-in, divided contactors in equally contact with the full surface of wafer, enabling repair of each contactor and improving the yield of contactors. The cassette structure of the mechanical pressurizing system in the testing apparatus is structured with a plurality of divided silicon contactor blocks and a guide frame for integrating these blocks and employs the wafer full surface simultaneous contact system of the divided contactor integration type. Each probe of the silicon contactor is equally placed in contact in the predetermined pressure with each test pad of each chip of the test wafer by mechanically pressuring each silicon contactor block which moves individually, the test control signal is supplied to each chip and this test result signal is obtained for the wafer level burn-in test.
摘要:
A packaging device for holding thereon a plurality of semiconductor devices to be inspected on an inspection device including a probe to be electrically connected to an electrode of each of the semiconductor devices, comprises, holes for respectively receiving detachably therein the semiconductor devices to keep a positional relationship among the semiconductor devices and a positional relationship between the packaging device and each of the semiconductor devices constant with a spacing between the semiconductor devices, in a direction perpendicular to a thickness direction of the semiconductor devices, and electrically conductive members adapted to be connected respectively to the electrodes of the semiconductor devices, and extending to an exterior of the packaging device so that the probe is connected to each of the electrically conductive members.
摘要:
A packaging device for holding thereon a plurality of semiconductor devices to be inspected on an inspection device including a probe to be electrically connected to an electrode of each of the semiconductor devices, comprises, holes for respectively receiving detachably therein the semiconductor devices to keep a positional relationship among the semiconductor devices and a positional relationship between the packaging device and each of the semiconductor devices constant with a spacing between the semiconductor devices, in a direction perpendicular to a thickness direction of the semiconductor devices, and electrically conductive members adapted to be connected respectively to the electrodes of the semiconductor devices, and extending to an exterior of the packaging device so that the probe is connected to each of the electrically conductive members.