Abstract:
In the highly accurate thin film probe sheet which is used for the contact to electrode pads disposed in high density with narrow pitches resulting from the increase in integration degree of semiconductor chips and for the inspection of semiconductor chips, a large spatial region in which a metal film selectively removable relative to terminal metal is formed in advance is formed in the peripheral region around minute contact terminals having sharp tips and disposed in high density with narrow pitches equivalent to those of the electrode pads. Thus, occurrence of damage in an inspection process is significantly reduced, and an inspection device simultaneously achieving the miniaturization and the durability can be provided.
Abstract:
A connection device and test system is capable of stable, low load damage-free probing of devices under test, which have many pins with a narrow pitch. Furthermore in order to achieve high speed exchange of electrical signals or so-called high frequency electrical signals, a support member is provided for supporting the connection device, a plurality of pointed contact terminals are arrayed in an area on the probing side, a multilayer film is provided having a plurality of lead out wires electrically connected to the contact terminals and a ground layer enclosing an insulation layer, and a frame is clamped on the rear side of the multilayer film. A clamping member is provided on the frame to make the multilayer film project out to eliminate slack in the multilayer film, a contact pressure means is provided for making the tips of the contact terminals contact each of the electrodes with predetermined contact pressure from the support member to the clamping member, and a compliance mechanism is provided so that the contact terminal group of the tip surface is arrayed in parallel with the electrode group terminal surface, so that the tips of the contact terminals contact the surface of the electrodes with an equal pressure.
Abstract:
In the highly accurate thin film probe sheet which is used for the contact to electrode pads disposed in high density with narrow pitches resulting from the increase in integration degree of semiconductor chips and for the inspection of semiconductor chips, a large spatial region in which a metal film selectively removable relative to terminal metal is formed in advance is formed in the peripheral region around minute contact terminals having sharp tips and disposed in high density with narrow pitches equivalent to those of the electrode pads. Thus, occurrence of damage in an inspection process is significantly reduced, and an inspection device simultaneously achieving the miniaturization and the durability can be provided.
Abstract:
A semiconductor device capable of facilitating high density mounting at low cost without causing any defective conduction at the time of connection to a substrate, a mounting structure thereof and a method of fabrication thereof, characterized in that pyramidal bump electrodes are bonded onto pad electrodes arranged on a semiconductor chip to form the semiconductor device.
Abstract:
To achieve high speed exchange of electrical signals between a connection device and a tester, a support member is provided for supporting the connection device, a plurality of pointed contact terminals are arrayed in an area on the probing side, a multiplayer film is provided having a plurality of lead out wires electrically connected to the contact terminals and a ground layer enclosing an insulation layer, and a frame is clamped on the rear side of the multiplayer film. A clamping member is provided on the frame to make the multiplayer film project out to eliminate slack in the multiplayer film. A contact pressure means is provided for making the tips of the contact terminals contact each of the electrodes with predetermined contact pressure from the support member to the clamping member. A compliance mechanism is provided so that the contact terminal group of the tip surface is arrayed in parallel with the electrode group terminal surface, so that the tips of the contact terminals contact the surface of the electrodes with an equal pressure.
Abstract:
To achieve high speed exchange of electrical signals between a connection device and a tester, a support member is provided for supporting the connection device, a plurality of pointed contact terminals are arrayed in an area on the probing side, a multiplayer film is provided having a plurality of lead out wires electrically connected to the contact terminals and a ground layer enclosing an insulation layer, and a frame is clamped on the rear side of the multiplayer film. A clamping member is provided on the frame to make the multiplayer film project out to eliminate slack in the multiplayer film. A contact pressure means is provided for making the tips of the contact terminals contact each of the electrodes with predetermined contact pressure from the support member to the clamping member. A compliance mechanism is provided so that the contact terminal group of the tip surface is arrayed in parallel with the electrode group terminal surface, so that the tips of the contact terminals contact the surface of the electrodes with an equal pressure.
Abstract:
The fabrication of a semiconductor integrated circuit device involves testing using a pushing mechanism that is constructed by forming, over the upper surface of a thin film probe, a reinforcing material having a linear expansion coefficient (thermal expansion coefficient) almost equal to that of a wafer to be tested; forming a groove in the reinforcing material above a contact terminal; placing an elastomer in the groove so that a predetermined amount projects out of the groove; and disposing a pusher and another elastomer to sandwich the pusher between the elastomers. With the use of such a probe, it is possible to improve the throughput of wafer-level electrical testing of a semiconductor integrated circuit.
Abstract:
Dispersion of a load may be kept within a predetermined allowance even when a plurality of probes in a large area are pressed in batch by pressing the probes provided in a membrane against a wafer by applying a pressure load to a plurality of places on a plane of the pressure members on the side opposite the wafer in a probe test step, burn-in test step which represent typical semiconductor device manufacturing steps. It is then possible to provide semiconductor devices and a manufacturing method thereof which enhance the reliability and productivity of the semiconductor devices by probing a large number of integrated circuits or a large size integrated circuit at the same time.
Abstract:
To achieve high speed exchange of electrical signals between a connection device and a tester, a support member is provided for supporting the connection device, a plurality of pointed contact terminals are arrayed in an area on the probing side, a multilayer film is provided having a plurality of lead out wires electrically connected to the contact terminals and a ground layer enclosing an insulation layer, and a frame is clamped on the rear side of the multilayer film. A clamping member is provided on the frame to make the multilayer film project out to eliminate slack in the multilayer film. A contact pressure means is provided for making the tips of the contact terminals contact each of the electrodes with predetermined contact pressure from the support member to the clamping member. A compliance mechanism is provided so that the contact terminal group of the tip surface is arrayed in parallel with the electrode group terminal surface, so that the tips of the contact terminals contact the surface of the electrodes with an equal pressure.
Abstract:
The fabrication of a semiconductor integrated circuit device involves testing using a pushing mechanism that is constructed by forming, over the upper surface of a thin film probe, a reinforcing material having a linear expansion coefficient (thermal expansion coefficient) almost equal to that of a wafer to be tested; forming a groove in the reinforcing material above a contact terminal; placing an elastomer in the groove so that a predetermined amount projects out of the groove; and disposing a pusher and another elastomer to sandwich the pusher between the elastomers. With the use of such a probe, it is possible to improve the throughput of wafer-level electrical testing of a semiconductor integrated circuit.