Abstract:
To permit electrical testing of a semiconductor integrated circuit device having test pads disposed at narrow pitches probes in a pyramid or trapezoidal pyramid form are formed from metal films formed by stacking a rhodium film and a nickel film successively. Via through-holes are formed in a polyimide film between interconnects and the metal films, and the interconnects are electrically connected to the metal films. A plane pattern of one of the metal films equipped with one probe and through-hole is obtained by turning a plane pattern of the other metal film equipped with the other probe and through-hole through a predetermined angle.
Abstract:
To permit electrical testing of a semiconductor integrated circuit device having test pads disposed at narrow pitches probes in a pyramid or trapezoidal pyramid form are formed from metal films formed by stacking a rhodium film and a nickel film successively. Via through-holes are formed in a polyimide film between interconnects and the metal films, and the interconnects are electrically connected to the metal films. A plane pattern of one of the metal films equipped with one probe and through-hole is obtained by turning a plane pattern of the other metal film equipped with the other probe and through-hole through a predetermined angle.
Abstract:
A probe having a sufficient height is manufactured by selectively depositing, over the main surface of a wafer, a copper film in a region in which a metal film is to be formed and a region which will be outside an adhesion ring when a probe card is fabricated; forming the metal film, polyimide film, interconnect, another polyimide film, another interconnect and a further polyimide film; and then removing the wafer and copper film. According to the present invention, when probe testing is performed using a prober (thin film probe) having the probe formed in the above-described manner while utilizing the manufacturing technology of semiconductor integrated circuit devices, it is possible to prevent breakage of the prober and a wafer to be tested.
Abstract:
As the thickness of the card holder for preventing warping of a multilayered wiring substrate 1 is increased, there occurs a problem that a thin film sheet 2 is buried in a card holder and secure contact between probes 7 and test pads cannot be realized. For its prevention, the thin film sheet 2 and a bonding ring 6 are bonded in a state where a tensile force is applied only to the central region IA of the thin film sheet 2, and a tensile force is not applied to an outer peripheral region OA. Then, the height of the bonding ring 6 defining the height up to the probe surface of the thin film sheet 2 is increased, thereby increasing the height up to the probe surface of the thin film sheet 2.
Abstract:
By using a membrane probe formed by using a manufacturing technique for semiconductor integrated circuit devices, the yield of probing collectively performed on a plurality of chips is to be enhanced. A probe card is formed by using a plurality of pushers, each pusher being formed of a POGO pin insulator, POGO pins, an FPC connector, a membrane probe HMS, an impact easing sheet, an impact easing plate, a chip condenser YRS and so on, wherein one or two POGO pins press a plurality of metal films arranged like islands. One or more cuts are made into what matches the chip to be tested in the area of the membrane probe in a direction substantially parallel to the extending direction of wiring electrically connected to probes formed in the membrane probe.
Abstract:
Any damage inflicted on test pads, inter-layer insulating films, semiconductor elements or wiring at the time of electrical inspection of semiconductor integrated circuit devices is to be reduced. Reinforcements having a substantially equal linear expansion ratio (coefficient of thermal expansion) relative to a wafer to be inspected are formed over an upper face of a thin film probe, grooves are cut in the reinforcements above the probes, a first elastomer which is softer than a second elastomer is so arranged as to fill the grooves and overflow the grooves by a prescribed quantity, a glass epoxy substrate, which is a multi-layered wiring board, is fitted over the second elastomer, and pads provided over an upper face of the glass epoxy substrate and bonding pads which are part of wirings belonging to the thin film probe are electrically connected by wires.
Abstract:
During probe testing using a prober having probe needles formed by using a manufacturing technology for a semiconductor integrated circuit device, reliable contact is ensured between the probe needles and test pads. A pressing tool having at least one hole portion formed therein and extending therethrough between the main and back surface thereof is prepared. An elastomer in the form of a sheet and a polyimide sheet are successively disposed on the main surface of the pressing tool. With th elastomer and the polyimide sheet being electrostatically attracted to the pressing tool, the pressing tool is disposed on a thin-film sheet such that the main surface thereof faces the back surface (the surface opposite to the main surface thereof formed with the probe) of the thin-film sheet. Then, the thin-film sheet with the pressing tool bonded thereto is attached to a probe card.
Abstract:
In the highly accurate thin film probe sheet which is used for the contact to electrode pads disposed in high density with narrow pitches resulting from the increase in integration degree of semiconductor chips and for the inspection of semiconductor chips, a large spatial region in which a metal film selectively removable relative to terminal metal is formed in advance is formed in the peripheral region around minute contact terminals having sharp tips and disposed in high density with narrow pitches equivalent to those of the electrode pads. Thus, occurrence of damage in an inspection process is significantly reduced, and an inspection device simultaneously achieving the miniaturization and the durability can be provided.
Abstract:
A low-EMI circuit which realizes a high mounting density by converting the potential fluctuation of a power supply layer with respect to a ground layer which occurs on switching an IC device etc., into Joule's heat in the substrate without using any parts as a countermeasure against the EMI. Its structure, a circuit board using it, and a method of manufacturing the circuit board are also disclosed. Parallel plate lines in which the Q-value of the stray capacitance between solid layers viewed from the power supply layer and ground layer is equivalently reduced and which are matchedly terminated by forming a structure in which a resistor (resistor layer) and another ground layer are provided in addition to the power supply layer and the ground layer on a multilayered circuit board. A closed shield structure is also disclosed.
Abstract:
A circuit substrate, such as a thermal printing head, having electrodes made of a material suitable for soldering. The electrode to be soldered, at least in part, is composed of an alloy of Ni and Cu, whose composition ranges from 65 mol % Ni - 35 mol % Cu to 75 mol % Ni - 25 mol % Cu.