Abstract:
A resonance power transmission system for controlling a supply voltage of a power converter based on power transmission efficiency is provided. According to an aspect, a resonance power transmitter configured to transmit resonance power to one or more resonance power receivers may include: a voltage controller configured to receive an input signal and to output voltage of a predetermined level; a source controller configured to control a signal level of the DC voltage based the number of resonance power receivers.
Abstract:
A resonance power transmission system, and a method of controlling transmission and reception of a resonance power are provided. According to one embodiment, a method of controlling resonance power transmission in a resonance power transmitter may include: transmitting resonance power to a resonance power receiver, the resonance power having resonance frequencies which vary with respect to a plurality of time intervals; and receiving, from the resonance power receiver, information regarding the resonance frequency having the highest power transmission efficiency among the resonance frequencies used in the time intervals.
Abstract:
A resonance power transmission system, and a method of controlling transmission and reception of a resonance power are provided. According to one embodiment, a method of controlling resonance power transmission in a resonance power transmitter may include: transmitting resonance power to a resonance power receiver, the resonance power having resonance frequencies which vary with respect to a plurality of time intervals; and receiving, from the resonance power receiver, information regarding the resonance frequency having the highest power transmission efficiency among the resonance frequencies used in the time intervals.
Abstract:
A communication apparatus in a wireless power transmission system includes an operating mode converter configured to switch an operating mode of the communication apparatus between a transmitting mode and a receiving mode according to a predetermined timing; and a transmitting unit configured to transmit state information of a channel occupied by a source including the communication apparatus using a continuous wave signal while the communication apparatus is operating in the transmitting mode irrespective of whether the communication apparatus is performing communication via the occupied channel. The source including the communication apparatus is configured to transmit wireless power. The occupied channel has been assigned to the source including the communication apparatus from a plurality of channels available in a communication cell for assignment to a plurality of sources each configured to transmit wireless power.
Abstract:
Provided is an apparatus that may control a direction of wireless power transmission. A radiative wireless power transmitter may include at least two first unit resonators to form a magnetic field with a target resonator based on an x-axis direction and a z-axis direction, and to transmit a resonance power to the target resonator, at least two second unit resonators to form a magnetic field with the target resonator based on the x-axis direction and a y-axis direction, and to transmit a resonance power to the target resonator, at least two third unit resonators to form a magnetic field with the target resonator based on the y-axis direction and the z-axis direction, and to transmit a resonance power to the target resonator, and a feeding unit to control resonance power transmission of the at least two first unit resonators, the at least two second unit resonators, and the at least two
Abstract:
A source device and a method for controlling a magnetic field using two source resonators in a wireless power transmission system are provided. A device configured to control a magnetic field, includes resonators configured to form the magnetic field to transmit power to another device. The device further includes a magnetic field shape determining unit configured to determine a shape of the magnetic field. The device further includes a phase changing unit configured to change a phase of at least one of the resonators to form the magnetic field in the determined shape.
Abstract:
An apparatus and method for communication using a wireless power are provided. The apparatus includes an amplifier configured to amplify an input signal based on a power supplied to the amplifier. The apparatus further includes a control unit configured to detect a change in an impedance of a target device, and to change the power based on the change in the impedance. The apparatus further includes a demodulation unit configured to receive a message from the target device, and to demodulate the message based on the changed power.
Abstract:
A wireless power transmission system based on cell division is provided. A communication and power control method of the wireless power transmission system, includes setting a magnetic coupling zone. The method further includes detecting a target device in the magnetic coupling zone. The method further includes transmitting a power to the target device. The method further includes adjusting an amount of the power based on a transmission efficiency of the power.
Abstract:
Provided are a wirelessly charged robot cleaner in a robot cleaning system and a controlling method thereof. The wirelessly charged robot may include a target resonator to receive a resonance power through energy-coupling with a source resonator of a wireless power transmitter, a wireless power receiving unit to convert the received resonance power into a rated voltage, and a battery controller to check a remaining capacity of the battery based on a scope of a predetermined area to be cleaned, and to charge, using the rated voltage, the battery based on the remaining capacity of the battery.
Abstract:
An overvoltage protecting unit and an overcurrent protecting unit protect a power device from an overvoltage and an overcurrent using a comparator having hysteresis. An overtemperature protecting unit protects the power device from an overtemperature using a thermistor having a resistance that changes as a temperature of the thermistor changes.