Abstract:
An apparatus and method of using near field communication (NFC) and wireless power transmission (WPT) are provided. A power receiving apparatus includes a resonator configured to receive a power and to output the power. The power receiving apparatus further includes a near field communication (NFC) receiver configured to perform wireless communication using the power output by the resonator. The power receiving apparatus further includes a wireless power transmission (WPT) receiver configured to supply a voltage using the power output by the resonator. The power receiving apparatus further includes a connecting unit configured to selectively connect the resonator to either the NFC receiver or the WPT receiver. The power receiving apparatus further includes a mode selector configured to control the connecting unit to selectively connect the resonator to either the NFC receiver or the WPT receiver based on the power output by the resonator.
Abstract:
An electronic device and method for transmitting and receiving a wireless power are provided. An electronic device for transmitting and receiving wireless power may include a resonator configured to operate, based on a plurality of operating modes of the electronic device including a power reception mode, a relay mode, and a power transmission mode, wherein: (i) in the power reception mode, the resonator is configured to receive power from a wireless power transmitter, (ii) in the relay mode, the resonator is configured to relay power received from the wireless power transmitter to a wireless power receiver, and (iii) in the power transmission mode, the resonator is configured to transmit power to the wireless power receiver; and a path controller configured to control at least one electrical pathway of electronic device based on the operating mode.
Abstract:
A method and apparatus for controlling wireless power transmission are provided. An output power of a source device may be wirelessly transmitted to a target device via a resonator. The source device may detect a change in a current of the output power, and may request the target device to verify a state of the target device. The source device may determine a state of a wireless power transmission based on the change in the current and the state of the target device. The source device may control wireless power transmission based on the determined state of the wireless power transmission.
Abstract:
An apparatus and method of using near field communication (NFC) and wireless power transmission (WPT) are provided. A power receiving apparatus includes a resonator configured to receive a power and to output the power. The power receiving apparatus further includes a near field communication (NFC) receiver configured to perform wireless communication using the power output by the resonator. The power receiving apparatus further includes a wireless power transmission (WPT) receiver configured to supply a voltage using the power output by the resonator. The power receiving apparatus further includes a connecting unit configured to selectively connect the resonator to either the NFC receiver or the WPT receiver. The power receiving apparatus further includes a mode selector configured to control the connecting unit to selectively connect the resonator to either the NFC receiver or the WPT receiver based on the power output by the resonator.
Abstract:
An apparatus configured to transmit power, and transceive data, using mutual resonance, includes a power transmitter configured to wirelessly transmit power to a device, using a power transmission frequency as a resonant frequency. The apparatus further includes a communication unit configured to transceive data to and from the device, using a communication frequency as a resonant frequency. The apparatus further includes a controller configured to determine a charging state of the device based on the data received from the device, and control an amount of the power based on the charging state.
Abstract:
A resonance power transmission system, and a method of controlling transmission and reception of a resonance power are provided. According to one embodiment, a method of controlling resonance power transmission in a resonance power transmitter may include: transmitting resonance power to a resonance power receiver, the resonance power having resonance frequencies which vary with respect to a plurality of time intervals; and receiving, from the resonance power receiver, information regarding the resonance frequency having the highest power transmission efficiency among the resonance frequencies used in the time intervals.
Abstract:
A wireless power transmission and charging system and method are provided. The wireless power may refer to energy that may be transferred from a wireless power transmitter to a wireless power receiver. The wireless power transmission and charging system may include a source device to wirelessly transmit power, and a target device to wirelessly receive power.
Abstract:
A wireless power receiving device and a wireless power transmission apparatus are provided. The wireless power receiver may include a resonator configured to emit an electromagnetic field, a blocker configured to surround a portion of an exterior of the resonator, and a spacer disposed between the resonator and the blocker.
Abstract:
A wireless charging station, an electric vehicle charged wirelessly, and a method of charging an electric vehicle are provided. A wireless charging station include a charging unit configured to transmit power wirelessly to an electric vehicle, using a source resonator installed in the charging station; and a driving unit configured to move a target resonator connected to the source resonator from a position at which the target resonator is mounted on the charging unit to an installation space of the electric vehicle, when the electric vehicle is disposed in a charging area of the charging station.
Abstract:
A wireless power transmission apparatus includes a resonance unit including resonators and configured to form a magnetic resonant coupling with another resonator, and a feeding unit configured to transmit alternating current (AC) power to one of the resonators. The wireless power transmission apparatus further includes a controller configured to determine a value of a capacitor connected to one of the resonators, based on a magnitude of a magnetic field formed by the resonance unit.