Abstract:
Electromagnetic wave focusing devices and optical apparatuses including the same are provided. An electromagnetic wave focusing device may include a plurality of material members located at different distances from a reference point. The intervals and/or widths of the material members may vary with distance from the reference point. For example, the intervals and/or widths of the material members may increase or decrease with distance from the reference point. The intervals and/or widths of the material members may be controlled to satisfy a spatial coherence condition with the electromagnetic wave.
Abstract:
Provided are a photosensor and a method of operating the same. The photosensor includes a lower electrode, a semiconductor layer, a 2-dimensional material layer, and an upper electrode. Photocurrent generated due to externally radiated light may be operated in a multiple detection mode including a lateral detection mode and a vertical detection mode. The upper electrode may include a plurality of electrode elements, which may be formed of the same conductive material or different conductive materials.
Abstract:
Provided are a photosensor and a method of operating the same. The photosensor includes a lower electrode, a semiconductor layer, a 2-dimensional material layer, and an upper electrode. Photocurrent generated due to externally radiated light may be operated in a multiple detection mode including a lateral detection mode and a vertical detection mode. The upper electrode may include a plurality of electrode elements, which may be formed of the same conductive material or different conductive materials.
Abstract:
Provided are electromagnetic wave reflectors and optical devices including the same. An electromagnetic wave reflector may include a plurality of layers which have an aperiodic structure and/or thickness. The plurality of layers may satisfy a condition of spatial coherence with respect to electromagnetic waves. The electromagnetic wave reflector may include a plurality of first material layers including a first material having a first refractive index and a plurality of second material layers including a second material having a second refractive index different from the first refractive index. At least two of the plurality of first material layers may have different thicknesses. At least two of the plurality of second material layers may have different thicknesses. At least one of the plurality of first material layers and at least one of the plurality of second material layers may have different thicknesses.
Abstract:
A method of designing a meta optical device is provided. The method includes: setting, via a processor, design data for arrangement and dimensions of a nanostructure of the meta optical device, according to a function to be implemented by the meta optical device; obtaining a phase change graph with respect to a change in the dimensions; setting a shape dimension region with phase defect in the phase change graph; and substituting a shape dimension with phase defect, which is included in the shape dimension region with phase defect among the dimensions included in the design data, with a substitution value that is outside the shape dimension region with phase defect. Accordingly, a meta optical device having no phase defect is implemented.
Abstract:
Provided are photoelectric devices and electronic apparatuses including the photoelectric devices. A photoelectric device may include a photoactive layer, the photoactive layer may include a nanostructure layer configured to generate a charge in response to light and a semiconductor layer adjacent to the nanostructure layer. The nanostructure layer may include one or more quantum dots. The semiconductor layer may include an oxide semiconductor. The photoelectric device may include a first electrode and a second electrode that contact different regions of the photoactive layer. A number of the photoelectric conversion elements may be arranged in a horizontal direction or may be stacked in a vertical direction. The photoelectric conversion elements may absorb and thereby detect light in different wavelength bands without the use of color filters.
Abstract:
A photon pair generator includes a light source configured to emit light, and a nonlinear optical element configured to receive the light radiated from the light source and generate a quantum-entangled photon pair through spontaneous parametric down-conversion (SPDC), the nonlinear optical element including a polar material layer and a nonlinear material layer provided on the polar material layer.
Abstract:
Provided is a device for determining a monomer molecule sequence of a polymer including different electrodes, and a method of efficiently determining a monomer molecule sequence of a polymer.