Abstract:
A white light emitting device including: a blue light emitting diode chip having a dominant wavelength of 443 to 455 nm; a red phosphor disposed around the blue light emitting diode chip, the red phosphor excited by the blue light emitting diode chip to emit red light; and a green phosphor disposed around the blue light emitting diode chip, the green phosphor excited by the blue light emitting diode chip to emit green light, wherein the red light emitted from the red phosphor has a color coordinate falling within a space defined by four coordinate points (0.5448, 0.4544), (0.7079, 0.2920), (0.6427, 0.2905) and (0.4794, 0.4633) based on the CIE 1931 chromaticity diagram, and the green light emitted from the green phosphor has a color coordinate falling within a space defined by four coordinate points (0.1270, 0.8037), (0.4117, 0.5861), (0.4197, 0.5316) and (0.2555, 0.5030) based on the CIE 1931 color chromaticity diagram.
Abstract:
A light emitting device includes: a substrate; a light emitting element mounted on the substrate and emitting blue light and green light; and a wavelength conversion part wavelength-converting a portion of light emitted from the light emitting element into red light, and including fluoride-based phosphors represented by Chemical Formula: AxMFy:Mn4+ (2≦x≦3 and 4≦y≦7, where element A is at least one selected from a group consisting of Li, Na, K, Rb, and Cs and element M is at least one selected from a group consisting of Si, Ti, Zr, Hf, Ge and Sn) and organic or inorganic coating layers enclosing the fluoride-based phosphors.
Abstract:
A light emitting device package includes a reflective unit having a first surface and a second surface opposing the first surface and having a through hole formed in a central portion of the reflective unit to penetrate through the first and second surfaces, a light emitting device disposed in the through hole and externally exposed to one of the first and second surfaces, and an optical device disposed on the first surface of the reflective unit to cover the light emitting device. The optical device allows light generated by the light emitting device to be partially transmitted and partially reflected to be emitted externally.