Abstract:
A beam collimator includes a plurality of lens units that are arranged along a reference trajectory so that a beam collimated to the reference trajectory comes out from an exit of the beam collimator. Each of the plurality of lens units forms a bow-shaped curved gap and is formed such that an angle of a beam traveling direction with respect to the reference trajectory is changed by an electric field generated in the bow-shaped curved gap. A vacant space is provided between one lens unit of the plurality of lens units and a lens unit that is adjacent to the lens unit. The vacant space is directed in a transverse direction of the collimated beam in a cross section that is perpendicular to the reference trajectory. An inner field containing the reference trajectory is connected to an outer field of the plurality of lens units through the vacant space.
Abstract:
A high-energy ion implanter includes a beam generation unit that includes an ion source and a mass analyzer, a high-energy multi-stage linear acceleration unit, a high-energy beam deflection unit that changes the direction of a high-energy ion beam toward a wafer, and a beam transportation unit that transports the deflected high-energy ion beam to the wafer. The beam transportation unit includes a beam shaper, a high-energy beam scanner, a high-energy beam collimator, and a high-energy final energy filter. Further, the high-energy beam collimator is an electric field type beam collimator that collimates a scan beam while performing the acceleration and the deceleration of a high-energy beam by an electric field.
Abstract:
A high-energy ion implanter includes a beam generation unit that includes an ion source and a mass analyzer, a high-energy multi-stage linear acceleration unit, a high-energy beam deflection unit that changes the direction of a high-energy ion beam toward a wafer, and a beam transportation unit that transports the deflected high-energy ion beam to the wafer. The beam transportation unit includes a beam shaper, a high-energy beam scanner, a high-energy beam collimator, and a high-energy final energy filter. Further, the high-energy beam collimator is an electric field type beam collimator that collimates a scan beam while performing the acceleration and the deceleration of a high-energy beam by an electric field.
Abstract:
A beam current adjuster for an ion implanter includes a variable aperture device which is disposed at an ion beam focus point or a vicinity thereof. The variable aperture device is configured to adjust an ion beam width in a direction perpendicular to an ion beam focusing direction at the focus point in order to control an implanting beam current. The variable aperture device may be disposed immediately downstream of a mass analysis slit. The beam current adjuster may be provided with a high energy ion implanter including a high energy multistage linear acceleration unit.