Abstract:
According to one embodiment, a processing liquid generator capable of improving the reliability of the concentration of generated processing liquid is provided.A processing liquid generator that generates processing liquid having undergone concentration adjustment includes a processing liquid adjuster (11a), which adjusts the concentration of the processing liquid, a first processing liquid path P1, through which the processing liquid flows to the processing liquid adjuster (11a), a second processing liquid path P2, through which the processing liquid flows to the processing liquid adjuster 11a, a first concentration meter 201a, which measures the concentration of the processing liquid flowing through the first processing liquid path P1, the measured concentration being the concentration of a component involved in the concentration adjustment in the processing liquid adjuster (11a), a second concentration meter 201b, which measures the concentration of the processing liquid flowing through the second processing liquid path P2, the measured concentration being the concentration of a component that is involved in the concentration adjustment and should be measured with the first concentration meter 201a in terms of concentration, a first valve mechanism 120a/130a, which opens and closes the first processing liquid path P1, and a second valve mechanism 120b/130b, which opens and closes the second processing liquid path P2.
Abstract:
A substrate processing device 10 has a water removing unit 110 and, when a solvent supply unit 58 supplies a volatile solvent to a surface of a substrate W, the water removing unit 110 supplies a water removing agent to the surface of the substrate W to promote replacement of the cleaning water on the surface of the substrate W with the volatile solvent.
Abstract:
A substrate processing device 10 has a water removing unit 110 and, when a solvent supply unit 58 supplies a volatile solvent to a surface of a substrate W, the water removing unit 110 supplies a water removing agent to the surface of the substrate W to promote replacement of the cleaning water on the surface of the substrate W with the volatile solvent.
Abstract:
According to one embodiment, a substrate processing apparatus includes a first liquid supplier, a second liquid supplier, and a controller. The first liquid supplier supplies a substrate with a sulfuric acid solution having a first temperature equal to or higher than the boiling point of hydrogen peroxide water. The second liquid supplier supplies a surface to be treated of the substrate with a mixture of sulfuric acid solution and hydrogen peroxide water having a second temperature lower than the first temperature. The controller controls the first liquid supplier to supply the sulfuric acid solution so as to heat the substrate to the boiling point of hydrogen peroxide water or higher. When the temperature of the substrate becomes equal to or higher than the second temperature, the controller controls the first liquid supplier to stop supplying the sulfuric acid solution and controls the second liquid supplier to supply the mixture.
Abstract:
According to one embodiment, a substrate processing apparatus (1) includes a table (4) configured to support a substrate W, a solvent supply unit (8) configured to supply a volatile solvent to a surface of the substrate W on the table (4), and an irradiator (10) configured to emit light to the substrate W, which has been supplied with the volatile solvent, and function as a heater that heats the substrate W such that a gas layer is formed on the surface of the substrate W to make the volatile solvent into a liquid ball. Thus, it is possible to dry the substrate successfully as well as to suppress pattern collapse.
Abstract:
A substrate processing device 100 includes a solvent replacing unit (organic solvent supply unit 15 and solvent supply unit 34) replacing a cleaning liquid with a volatile solvent of a low concentration, and thereafter further performing replacement with a volatile solvent of a high concentration.
Abstract:
An cleaning solution producing apparatus according to an embodiment includes: a mixing unit configured to produce a liquid mixture by mixing a hydrogen peroxide solution into an acidic or alkaline liquid, and to raise the pressure of the produced liquid mixture by use of an oxygen gas produced through the decomposition of the hydrogen peroxide solution, or by use of vapor produced by heat of the reaction; and a bubble producing unit configured to produce multiple fine bubbles in the liquid mixture by releasing the pressure of the liquid mixture which is raised by the mixing unit.