Radiation Phase Contrast Imaging Device
    2.
    发明申请

    公开(公告)号:US20190056336A1

    公开(公告)日:2019-02-21

    申请号:US16081249

    申请日:2017-02-22

    Abstract: [PROBLEM TO BE SOLVED] To provide a radiation phase contrast imaging device having a small device configuration[SOLVING MEANS] The present invention focused on the findings that the distance between the phase grating 5 and the FPD 4 does not need to be the Talbot distance. The distance between the phase grating 5 and the FPD 4 can be more freely set. However, a self-image cannot be detected unless the self-image is sufficiently magnified with respect to the phase grating 5. The degree on how much the self-image is magnified on the FPD 4 with respect to the original phase grating 5 is determined by a magnification ratio X2/X1. Therefore, in the present invention, the magnification ratio is set to be the same as the magnification ratio in a conventional configuration. With this, even if the distance X2 between the radiation source 3 and the FPD 4 is reduced, a situation in which the self-image cannot be detected by the FPD 4 due to the excessively small size thereof does not occur.

    X-RAY PHASE IMAGING APPARATUS
    5.
    发明申请

    公开(公告)号:US20200337659A1

    公开(公告)日:2020-10-29

    申请号:US16834883

    申请日:2020-03-30

    Abstract: In this X-ray phase imaging apparatus, at least one of a plurality of gratings is composed of a plurality of grating portions arranged along a third direction perpendicular to a first direction along which a subject or an imaging system is moved by a moving mechanism and a second direction along which an X-ray source, a detection unit, and a plurality of grating portions are arranged. The plurality of grating portions are arranged such that adjacent grating portions overlap each other when viewed in the first direction.

    RADIATION IMAGING APPARATUS
    10.
    发明申请

    公开(公告)号:US20190175126A1

    公开(公告)日:2019-06-13

    申请号:US16309820

    申请日:2017-03-15

    Abstract: Provided is a radiation imaging apparatus capable of performing precise imaging without performing pre-imaging in the absence of a subject. According to the present invention, it is possible to provide a radiation imaging apparatus capable of performing precise imaging without performing pre-imaging in the absence of a subject immediately before. That is, the apparatus of the present invention is provided with a phase grating 5 provided with a subject area and a reference area. Both areas each have a predetermined pattern that absorbs radiation, but the patterns are different from each other. In this area, an image of the phase grating 5 is observed in a moire pattern of a long period. This moire image of a long period changes in the positions due to the minute change in the relative position between the phase grating 5 and the absorption grating 6, so it becomes possible to detect the minute change of the relative position between the radiation source, the phase grating 5, and the absorption grating 6 from the image of the reference area.

Patent Agency Ranking