Abstract:
Corrosion-resistant coated articles and a thermal chemical vapor deposition coating processes are disclosed. The article includes a metallic material having a first composition including a first iron concentration and a first chromium concentration, the first iron concentration being greater than the first chromium concentration, a surface of the metallic material having a second composition including a second iron concentration and a second chromium concentration, the second chromium concentration being less than the first chromium concentration, an oxide layer on the surface of the metallic material having a third composition including an iron oxide concentration and a chromium oxide concentration, the chromium oxide concentration being greater than the iron oxide concentration and being devoid of precipitates, and a thermal chemical vapor deposition coating on the oxide layer. The process includes producing the article by treating to produce the surface, oxidizing to produce the oxide layer, and applying the coating.
Abstract:
Industrial equipment articles and thermal chemical vapor coated articles are disclosed. The articles include a coating on a substrate of the industrial equipment article, the coating including silicon, carbon, and hydrogen. The industrial equipment article requires resistance to protein adsorption. The industrial equipment article was heated during application of the coating to a temperature of between 300 degrees C. and 600 degrees C. The thermal chemical vapor coated article includes a coating on the thermal chemical vapor coated article, the coating formed by thermal decomposition, oxidation, then functionalization. The thermal chemical vapor coated article is industrial equipment requiring resistance to protein adsorption. The coating is resistant to the protein adsorption and is on a substrate heated during the thermal decomposition.
Abstract:
A coated article is disclosed. The article includes a coating formed by thermal decomposition, oxidation then functionalization. The article is configured for a marine environment, the marine environment including fouling features. The coating is resistant to the fouling features. Additionally or alternatively, the article is a medical device configured for a protein-containing environment, the protein-containing environment including protein adsorption features. The coating is resistant to the protein adsorption features.
Abstract:
Cold thermal chemical vapor deposition coatings, articles, and processes are disclosed. Specifically, a cold thermal chemical vapor deposition process includes positioning an article, heating a precursor gas to at least a decomposition temperature of the precursor gas to produce a deposition gas, introducing the deposition gas to a coating vessel, and depositing a coating from the deposition gas onto the article within the coating vessel. The article remains at a temperature below the decomposition temperature throughout the introducing and depositing of the deposition gas. The coating on the article has a gradient formed by the depositing of the coating having no flow for a period of time. The coated article includes a thermally-sensitive substrate (the thermally-sensitive substrate capable of being modified by a temperature of 300 degrees Celsius) and a coating the thermally-sensitive substrate.
Abstract:
Nano-wire growth processes, nano-wires, and articles having nano-wires are disclosed. The nano-wire growth process includes trapping growth-inducing particles on a substrate, positioning the substrate within a chamber, closing the chamber, applying a vacuum to the chamber, introducing a precursor gas to the chamber, and thermally decomposing the precursor gas. The thermally decomposing of the precursor gas grows nano-wires from the growth-inducing particles. The nano-wires and the articles having the nano-wires are produced by the nano-wire growth process.
Abstract:
Coated articles are disclosed. One embodiment of a coated article includes a substrate capable of being subjected to corrosion and a deposited coating on the substrate. The deposited coating has silicon with the substrate resisting corrosion with the deposited coating on the substrate when exposed to 15% NaClO by a rate of at least 5% greater than the corrosion rate of a coating applied with the same process but without introducing the deposition gas at the sub-decomposition temperature and/or the substrate with the deposited coating having a 15% NaClO corrosion rate of between 0 and 3 mils per year.
Abstract:
Thermal chemical vapor deposition split-functionalizing processes, coatings, and products are disclosed. The thermal chemical vapor deposition split-functionalizing process includes positioning an article within an enclosed chamber, functionalizing the article within a first temperature range for a first period of time, and then further functionalizing the article within a second temperature range for a second period of time. The thermal chemical vapor deposition split-functionalized product includes a functionalization formed by functionalizing within a first temperature range for a first period of time and a further functionalization formed by further functionalizing within a second temperature range for a second period of time.
Abstract:
Corrosion-resistant coated articles and a thermal chemical vapor deposition coating processes are disclosed. The article includes a metallic material having a first composition including a first iron concentration and a first chromium concentration, the first iron concentration being greater than the first chromium concentration, a surface of the metallic material having a second composition including a second iron concentration and a second chromium concentration, the second chromium concentration being less than the first chromium concentration, an oxide layer on the surface of the metallic material having a third composition including an iron oxide concentration and a chromium oxide concentration, the chromium oxide concentration being greater than the iron oxide concentration and being devoid of precipitates, and a thermal chemical vapor deposition coating on the oxide layer. The process includes producing the article by treating to produce the surface, oxidizing to produce the oxide layer, and applying the coating.
Abstract:
Fluid contact process, coated article, and coating processes are disclosed. The fluid contact process includes flowing a corrosive fluid to contact a coated article. The coated article includes an aluminum-containing substrate, a first region on the aluminum-containing substrate, the first region comprising carbon and silicon, a second region distal from the aluminum-containing substrate in comparison to the first region, the second region having oxygen at a greater concentration, by weight, than the first region, a third region distal from the first region in comparison to the second region, the third region comprising amorphous silicon. The coating process includes positioning the aluminum-containing substrate within an enclosed chamber, then, thermally decomposing dimethyl silane-and-silane-containing mixture within the enclosed chamber, then thermally oxidizing, and then, thermally decomposing silane.
Abstract:
Liquid chromatography techniques are disclosed. Specifically, the liquid chromatography technique includes providing a liquid chromatography system having a coated metallic fluid-contacting element, and transporting a fluid to contact the coated metallic fluid-contacting element. Conditions for the transporting of the fluid are selected from the group consisting of the temperature of the fluid being greater than 150° C., pressure urging the fluid being greater than 60 MPa, the fluid having a protein-containing analyte incompatible with one or both of titanium and polyether ether ketone, the fluid having a chelating agent incompatible with the one or both of the titanium or the polyether ether ketone, and combinations thereof