Abstract:
Thermal chemical vapor deposition coated articles and thermal chemical vapor deposition processes are disclosed. The thermal chemical vapor deposition coated article includes a substrate and a coating on the substrate, the coating having multiple layers and being positioned on regions of the thermal chemical vapor deposition coated article that are unable to be concurrently coated through line-of-sight techniques. The coating has a concentration of particulate from gas phase nucleation, per 100 square micrometers, of fewer than 6 particles having a dimension of greater than 0.5 micrometers. The thermal chemical vapor deposition process includes introducing a multiple aliquot of a silicon-containing precursor to the enclosed vessel with intermediate gaseous soaking to produce the coated article.
Abstract:
An article including a coating and a process including an article with a coating are disclosed. The article includes an aluminum-containing substrate including, by weight, at least 95% aluminum, and a coated and stabilized surface on the aluminum-containing substrate, the coated and stabilized surface being applied by thermal chemical vapor deposition at a temperature of less than 600° C. The process includes transporting fluid along a coated and stabilized surface positioned on an aluminum-containing substrate.
Abstract:
Thermal chemical vapor deposition products and processes are disclosed. The products include a ceramic substrate and a non-porous surface on the ceramic substrate, the non-porous surface including a ceramic material. The process includes transporting fluid along a non-porous surface, the non-porous surface being positioned on a ceramic substrate and being a thermal chemical vapor deposition coating.
Abstract:
Industrial equipment articles and thermal chemical vapor coated articles are disclosed. The articles include a coating on a substrate of the industrial equipment article, the coating including silicon, carbon, and hydrogen. The industrial equipment article requires resistance to protein adsorption. The industrial equipment article was heated during application of the coating to a temperature of between 300 degrees C. and 600 degrees C. The thermal chemical vapor coated article includes a coating on the thermal chemical vapor coated article, the coating formed by thermal decomposition, oxidation, then functionalization. The thermal chemical vapor coated article is industrial equipment requiring resistance to protein adsorption. The coating is resistant to the protein adsorption and is on a substrate heated during the thermal decomposition.
Abstract:
The present invention relates to a coated article. The coated article includes a first layer, a second layer, and a diffusion region between the first layer and the second layer. The first layer has a first atomic concentration of C, a first atomic concentration of Si, and a first atomic concentration of O. The second layer has a first atomic concentration of Fe, a first atomic concentration of Cr, and a first atomic concentration of Ni. The diffusion region has a second atomic concentration of the C, a second atomic concentration of the Si, a second atomic concentration of the O, a second atomic concentration of the Fe, a second atomic concentration of the Cr, and a second atomic concentration of the Ni. All of the atomic concentrations are based upon Auger Electron Spectroscopy.
Abstract:
A coated article is disclosed. The article includes a coating formed by thermal decomposition, oxidation then functionalization. The article is configured for a marine environment, the marine environment including fouling features. The coating is resistant to the fouling features. Additionally or alternatively, the article is a medical device configured for a protein-containing environment, the protein-containing environment including protein adsorption features. The coating is resistant to the protein adsorption features.
Abstract:
Thermal chemical vapor deposition coated articles and thermal chemical vapor deposition processes are disclosed. The article includes a substrate and a thermal chemical vapor deposition coating on the substrate. The thermal chemical vapor deposition coating includes properties from being produced by diffusion-rate-limited thermal chemical vapor deposition. The thermal chemical vapor deposition process includes introducing a gaseous species to a vessel and producing a thermal chemical vapor deposition coating on an article within the vessel by a diffusion-rate-limited reaction of the gaseous species.
Abstract:
Thermal chemical vapor deposition coated product and uses of such products are disclosed. A thermal chemical vapor deposition coated product includes a threaded substrate and a lubricious coating on the threaded substrate, the lubricious coating having a coefficient of friction of between 0.05 and 0.58 and being a thermal chemical vapor deposition. A process includes engaging the thermal chemical vapor deposition coated product with a material having mating threads, and applying pressure to the thermal chemical vapor deposition coated product while engaged with the material.
Abstract:
A chemical vapor deposition process and coated article are disclosed. The chemical vapor deposition process includes positioning an article in a chemical vapor deposition chamber, then introducing a deposition gas to the chemical vapor deposition chamber at a sub-decomposition temperature that is below the thermal decomposition temperature of the deposition gas, and then heating the chamber to a super-decomposition temperature that is equal to or above the thermal decomposition temperature of the deposition gas resulting in a deposited coating on at least a surface of the article from the introducing of the deposition gas. The chemical vapor deposition process remains within a pressure range of 0.01 psia and 200 psia and/or the deposition gas is dimethylsilane. The coated article includes a substrate subject to corrosion and a deposited coating on the substrate, the deposited coating having silicon, and corrosion resistance.
Abstract:
Amorphous coatings and coated articles having amorphous coatings are disclosed. The amorphous coating comprises a first layer and a second layer, the first layer being proximal to a metal substate compared to the second layer, the second layer being distal from the metal substrate compared to the first layer. The first layer and the second layer comprise carbon, hydrogen, and silicon. The first layer further comprises oxygen.