Abstract:
Embodiments of the present disclosures are directed to improved approaches for achieving high-performance light extraction from a Group III-nitride volumetric LED chips. More particularly, disclosed herein are techniques for achieving high-performance light extraction from a Group III-nitride volumetric LED chip using surface and sidewall roughening.
Abstract:
A light emitting device includes a substrate having a surface region and a light emitting diode overlying the surface region. The light emitting diode is fabricated on a semipolar or nonpolar GaN containing substrate and emits electromagnetic radiation of a first wavelength. The diode includes a quantum well region characterized by an electron wave function and a hole wave function. The electron wave function and the hole wave function are substantially overlapped within a predetermined spatial region of the quantum well region. The device has a transparent phosphor overlying the light emitting diode. The phosphor is excited by the substantially polarized emission to emit electromagnetic radiation of a second wavelength.
Abstract:
A light emitting device includes a substrate having a surface region and a light emitting diode overlying the surface region. The light emitting diode is fabricated on a semipolar or nonpolar GaN containing substrate and emits electromagnetic radiation of a first wavelength. The diode includes a quantum well region characterized by an electron wave function and a hole wave function. The electron wave function and the hole wave function are substantially overlapped within a predetermined spatial region of the quantum well region. The device has a transparent phosphor overlying the light emitting diode. The phosphor is excited by the substantially polarized emission to emit electromagnetic radiation of a second wavelength.
Abstract:
A method of fabricating LEDs from a wafer comprising a substrate and epitaxial layers and having a substrate side and a epitaxial side, said method comprising: (a) applying a laser beam across at least one of said substrate side or said epitaxial side of said wafer to define at least one laser-scribed recess having a laser-machined surface; and (b) singulating said wafer along said laser-scribed recess to form singulated LEDs, said singulated LEDs having a top surface, a bottom surface, and a plurality of sidewalls, at least one of said sidewalls comprising at least a first portion comprising at least a portion of said laser-machined surface.
Abstract:
Embodiments of the present disclosures are directed to improved approaches for achieving high-performance light extraction from a Group III-nitride volumetric LED chips. More particularly, disclosed herein are techniques for achieving high-performance light extraction from a Group III-nitride volumetric LED chip using surface and sidewall roughening.