Abstract:
An insulated gate bipolar transistor, comprising an anode second conductivity-type region and an anode first conductivity-type region provided on a drift region; the anode first conductivity-type region comprises a first region and a second region, and the anode second conductivity-type region comprises a third region and a fourth region, the dopant concentration of the first region being less than that of the second region, the dopant concentration of the third region being less than that of the fourth region, the third region being provided between the fourth region and a body region, the first region being provided below the fourth region, and the second region being provided below the third region and located between the first region and the body region.
Abstract:
A laterally double-diffused metal oxide semiconductor device is provided, including: a drift region (3) having a first conductivity type; a first body region (10) disposed on the drift region (3) and having a second conductivity type, the first conductivity type and the second conductivity type being opposite conductivity types; a first conductivity type region (13) disposed in the first body region (10); a second body region (12) disposed in the first conductivity type region (13) and having the second conductivity type; a source region (11) disposed in the second body region (12) and having the first conductivity type; and a contact region (9) disposed in the first body region (10) and having the second conductivity type.
Abstract:
Parasitic high-voltage diodes implemented by integration technology in a high-voltage level shift circuit are used for charging a bootstrap capacitor CB, wherein a power supply end of the high voltage level shift circuit is a high-side floating power supply VB, and a reference ground is a floating voltage PGD that is controlled by a bootstrap control circuit. A first parasitic diode DB1 and a second parasitic diode DB2 are provided between the VB and the PGD. The bootstrap control circuit is controlled by a high-side signal and a low-side signal.
Abstract:
The present invention discloses a gate drive circuit for reducing a reverse recovery current of a power device, and belongs to the field of basic electronic circuit technologies. The gate drive circuit includes a high-voltage LDMOS transistor, a diode forming a freewheeling path when the diode is turned on or a low-voltage MOS transistor in anti-parallel connection with a body diode, and a voltage detection circuit. When the power device is turned off, a freewheeling current produced by an inductive load flows through a freewheeling diode, the voltage detection circuit detects that the freewheeling diode is turned on, and an output signal is processed by a control circuit, to cause the drive circuit to output a high level, so that channels of the power device and the high-voltage LDMOS transistor are turned on, the freewheeling current flows through the conductive channels, almost not through the freewheeling diode, and there is no reverse recovery current in the freewheeling diode at this time, thereby reducing the reverse recovery current of the power device.
Abstract:
A high-current, N-type silicon-on-insulator lateral insulated-gate bipolar transistor, including: a P-type substrate, a buried-oxide layer disposed on the P-type substrate, an N-type epitaxial layer disposed on the oxide layer, and an N-type buffer trap region. A P-type body region and an N-type central buffer trap region are disposed inside the N-type epitaxial layer; a P-type drain region is disposed in the buffer trap region; N-type source regions and a P-type body contact region are disposed in the P-type body region; an N-type base region and a P-type emitter region are disposed in the buffer trap region; gate and field oxide layers are disposed on the N-type epitaxial layer; polycrystalline silicon gates are disposed on the gate oxide layers; and a passivation layer and metal layers are disposed on the surface of the symmetrical transistor. P-type emitter region output and current density are improved without increasing the area of the transistor.
Abstract:
A high-current, N-type silicon-on-insulator lateral insulated-gate bipolar transistor, including: a P-type substrate, a buried-oxide layer disposed on the P-type substrate, an N-type epitaxial layer disposed on the oxide layer, and an N-type buffer trap region. A P-type body region and an N-type central buffer trap region are disposed inside the N-type epitaxial layer; a P-type drain region is disposed in the buffer trap region; N-type source regions and a P-type body contact region are disposed in the P-type body region; an N-type base region and a P-type emitter region are disposed in the buffer trap region; gate and field oxide layers are disposed on the N-type epitaxial layer; polycrystalline silicon gates are disposed on the gate oxide layers; and a passivation layer and metal layers are disposed on the surface of the symmetrical transistor. P-type emitter region output and current density are improved without increasing the area of the transistor.
Abstract:
An isolation structure of a high-voltage driving circuit includes a P-type substrate and a P-type epitaxial layer; a high voltage area, a low voltage area and a high and low voltage junction terminal area are arranged on the P-type epitaxial layer; a first P-type junction isolation area is arranged between the high and low voltage junction terminal area and the low voltage area, and a high-voltage insulated gate field effect tube is arranged between the high voltage area and the low voltage area; two sides of the high-voltage insulated gate field effect tube and an isolation structure between the high-voltage insulated gate field effect tube and a high side area are formed as a second P-type junction isolation area.
Abstract:
A transverse ultra-thin insulated gate bipolar transistor having current density includes: a P substrate, where the P substrate is provided with a buried oxide layer thereon, the buried oxide layer is provided with an N epitaxial layer thereon, the N epitaxial layer is provided with an N well region and P base region therein, the P base region is provided with a first P contact region and an N source region therein, the N well region is provided with an N buffer region therein, the N well region is provided with a field oxide layer thereon, the N buffer region is provided with a P drain region therein, the N epitaxial layer is provided therein with a P base region array including a P annular base region, the P base region array is located between the N well region and the P base region, the P annular base region is provided with a second P contact region and an N annular source region therein, and the second P contact region is located in the N annular source region. The present invention greatly increases current density of a transverse ultra-thin insulated gate bipolar transistor, thus significantly improving the performance of an intelligent power module.
Abstract:
A transverse ultra-thin insulated gate bipolar transistor having current density includes: a P substrate, where the P substrate is provided with a buried oxide layer thereon, the buried oxide layer is provided with an N epitaxial layer thereon, the N epitaxial layer is provided with an N well region and P base region therein, the P base region is provided with a first P contact region and an N source region therein, the N well region is provided with an N buffer region therein, the N well region is provided with a field oxide layer thereon, the N buffer region is provided with a P drain region therein, the N epitaxial layer is provided therein with a P base region array including a P annular base region, the P base region array is located between the N well region and the P base region, the P annular base region is provided with a second P contact region and an N annular source region therein, and the second P contact region is located in the N annular source region. The present invention greatly increases current density of a transverse ultra-thin insulated gate bipolar transistor, thus significantly improving the performance of an intelligent power module.
Abstract:
A lateral insulated gate bipolar transistor (IGBT) with a low turn-on overshoot current is provided to reduce a peak value of a current flowing through a device during turn-on of a second gate pulse while preventing a current capability and a withstand voltage capability from being degraded. The lateral IGBT includes: a buried oxygen arranged on a P-type substrate, an N-type drift region arranged on the buried oxygen, on which a P-type body region and an N-type buffer region are arranged, a P-type collector region arranged in the N-type buffer region, a field oxide layer arranged above the N-type drift region, a P-type well region arranged in the P-type body region, and a P-type emitter region and an emitter region arranged in the P-type well region, where inner boundaries of the foregoing 4 regions are synchronously recessed to form a pinch-off region. A gate oxide layer is arranged on a surface of the P-type body region, and a polysilicon gate is arranged on the gate oxide layer. The polysilicon gate includes a first gate located above the surface of the P-type body region and a second gate located above the pinch-off region and the N-type drift region. The first gate is connected to a first gate resistor, and the second gate is connected to a second gate resistor.