Abstract:
A semiconductor integrated device, comprising: a package defining an internal space and having an acoustic-access opening in acoustic communication with an environment external to the package; a MEMS acoustic transducer, housed in the internal space and provided with an acoustic chamber facing the acoustic-access opening; and a filtering module, which is designed to inhibit passage of contaminating particles having dimensions larger than a filtering dimension and is set between the MEMS acoustic transducer and the acoustic-access opening. The filtering module defines at least one direct acoustic path between the acoustic-access opening and the acoustic chamber.
Abstract:
An actuation structure of a MEMS electroacoustic transducer is formed in a die of semiconductor material having a monolithic body with a front surface and a rear surface extending in a horizontal plane x-y plane and defined in which are: a frame; an actuator element arranged in a central opening defined by the frame; cantilever elements, coupled at the front surface between the actuator element and the frame; and piezoelectric regions arranged on the cantilever elements and configured to be biased to cause a deformation of the cantilever elements by the piezoelectric effect. A first stopper arrangement is integrated in the die and configured to interact with the cantilever elements to limit a movement thereof in a first direction of a vertical axis orthogonal to the horizontal plane, x-y plane towards the underlying central opening.
Abstract:
A piezoelectric MEMS transducer formed in a body of semiconductor material, which has a central axis and a peripheral area and comprises a plurality of beams, transverse to the central axis and having a first end, coupled to the peripheral area of the body, and a second end, facing the central axis; a membrane, transverse to the central axis and arranged underneath the plurality of beams; and a pillar, parallel to the central axis and rigid with the second end of the beams and to the membrane. The MEMS transducer further comprises a plurality of piezoelectric sensing elements arranged on the plurality of beams.
Abstract:
A method for manufacturing a filtering module comprising the steps of: forming a multilayer body comprising a filter layer of semiconductor material and having a thickness of less than 10 μm, a first structural layer coupled to a first side of the filter layer, and a second structural layer coupled to a second side, opposite to the first side, of the filter layer; forming a recess in the first structural layer, which extends throughout its thickness; removing selective portions, exposed through the recess, of the filter layer to form a plurality of openings, which extend throughout the thickness of the filter layer; and completely removing the second structural layer to connect fluidically the first and second sides of the filter layer, thus forming a filtering membrane designed to inhibit passage of contaminating particles.
Abstract:
A packaged electronic system having a support formed by an insulating organic substrate housing a buried conductive region that is floating. A first die is fixed to the support and carries, on a first main surface, a first die contact region capacitively coupled to a first portion of the buried conductive region. A second die is fixed to the support and carries, on a first main surface, a second die contact region capacitively coupled to a second portion of the buried conductive region. A packaging mass encloses the first die, the second die, the first die contact region, the second die contact region, and, at least partially, the support.
Abstract:
A micro-machined ultrasonic transducer is proposed. The micro-machined ultrasonic transducer includes a membrane element for transmitting/receiving ultrasonic waves, during the transmission/reception of ultrasonic waves the membrane element oscillating, about an equilibrium position, at a respective resonance frequency. The equilibrium position of the membrane element is variable according to a biasing electric signal applied to the membrane element. The micro-machined ultrasonic transducer further comprises a cap structure extending above the membrane element; the cap structure identifies, between it and the membrane element, a cavity whose volume is variable according to the equilibrium position of the membrane element. The cap structure comprises an opening for inputting/outputting the ultrasonic waves into/from the cavity. The cap structure and the membrane element act as tunable Helmholtz resonator, whereby the resonance frequency is variable according to the volume of the cavity.
Abstract:
Capacitive, MEMS-type acoustic transducer, having a sound collection part and a transduction part. A substrate region surrounds a first chamber arranged in the sound collection part and open towards the outside; a fixed structure is coupled to the substrate region; a cap region is coupled to the fixed structure. A sensitive membrane is arranged in the sound collection part, is coupled to the fixed structure and faces the first chamber. A transduction chamber is arranged in the transduction part, hermetically closed with respect to the outside and accommodates a detection membrane. An articulated structure extends between the sensitive membrane and the detection membrane, through the walls of the transduction chamber. A fixed electrode faces and is capacitively coupled to the detection membrane. Conducive electrical connection regions extend above the substrate region, into the transduction chamber.
Abstract:
A microelectromechanical electroacoustic transducer includes a supporting frame of semiconductor material, a membrane of semiconductor material, connected to the supporting frame along a perimeter and having central symmetry, and a piezoelectric actuator on a peripheral portion of the membrane. The membrane has through slits of elongated shape arranged around a center of the membrane.
Abstract:
A MEMS acoustic transducer provided with: a substrate of semiconductor material, having a back surface and a front surface opposite with respect to a vertical direction; a first cavity formed within the substrate, which extends from the back surface to the front surface; a membrane which is arranged at the upper surface, suspended above the first cavity and anchored along a perimeter thereof to the substrate; and a combfingered electrode arrangement including a number of mobile electrodes coupled to the membrane and a number of fixed electrodes coupled to the substrate and facing respective mobile electrodes for forming a sensing capacitor, wherein a deformation of the membrane as a result of incident acoustic pressure waves causes a capacitive variation of the sensing capacitor. In particular, the combfingered electrode arrangement lies vertically with respect to the membrane and extends parallel thereto.
Abstract:
Method for determining a first and a second calibrated value of atmospheric pressure, performed by an electronic apparatus comprising a fixed device and a first and a second movable device comprising respectively a first and a second movable barometer. The method comprises: determining whether the movable devices are being inductively charged by the fixed device; if so, acquiring respective measured values of atmospheric pressure through the movable barometers, and a reference value of atmospheric pressure in a common reference point of the electronic apparatus, the movable barometers being at respective predefined height differences with respect to the common reference point; calculating respective pressure differences as a function of the measured values of atmospheric pressure and of the reference value of atmospheric pressure; and when the movable devices are not being charged, acquiring new measured values of atmospheric pressure through the movable barometers, and determining the respective calibrated values of atmospheric pressure as a function of the new measured values of atmospheric pressure and of the pressure differences.