Abstract:
A scanning device includes a frame, having a central opening, and an array including a plurality of parallel mirrors contained within the central opening of the frame. Hinges respectively connect the mirrors to the frame and define respective, mutually-parallel axes of rotation of the mirrors relative to the frame. A main drive applies a driving force to the array so as to drive an oscillation of the mirrors about the hinges at a resonant frequency of the array. A sensor is configured to detect a discrepancy in a synchronization of the oscillation among the mirrors in the array, and an adjustment circuit applies a corrective signal to at least one of the mirrors in order to alleviate the detected discrepancy.
Abstract:
MEMS accelerometers have a substrate, and a proof mass portion thereof which is separated from the substrate surrounding it by a gap. An electrically-conductive anchor is coupled to the proof mass, and a plurality of electrically-conductive suspension anus that are separated from the proof mass extend from the anchor and are coupled to the substrate surrounding the proof mass. A plurality of sense and actuation electrodes are separated from the proof mass by gaps and are coupled to processing electronics. The fabrication methods use deep reactive ion etch bulk micromachining and surface micromachining to form the proof mass, suspension arms and electrodes. The anchor, suspension arms and electrodes are made in the same process steps from the same electrically conductive material, which is different from the substrate material.
Abstract:
MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer. Another embodiment provides a method for making an interferometric modulator that includes providing a substrate, depositing a first electrically conductive material over at least a portion of the substrate, depositing a sacrificial material over at least a portion of the first electrically conductive material, depositing an insulator over the substrate and adjacent to the sacrificial material to form a support structure, and depositing a second electrically conductive material over at least a portion of the sacrificial material, the sacrificial material being removable by heat-vaporization to thereby form a cavity between the first electrically conductive layer and the second electrically conductive layer.
Abstract:
Described herein are manufacturing techniques for achieving stress isolation in microelectromechanical systems (MEMS) devices that involve isolation trenches formed from the backside of the substrate. The techniques described herein involve etching a trench in the bottom side of the substrate subsequent to forming a MEMS platform, and processing the MEMS platform to form a MEMS device on the top side of the substrate subsequent to etching the trench.
Abstract:
There is provided a sensor element including: a semiconductor base member having a first main surface and a second main surface located opposite to the first main surface, and having a cavity structure formed on the second main surface side; and a detection element formed on the first main surface side in a region where the cavity structure is formed, the second main surface of the semiconductor base member including a convexly and concavely shaped portion, and a tip of a convex portion of the convexly and concavely shaped portion having a curved shape.
Abstract:
The present disclosure provides an embodiment of a micro-electro-mechanical system (MEMS) structure, the MEMS structure comprising a MEMS substrate; a first and second conductive plugs of a semiconductor material disposed on the MEMS substrate, wherein the first conductive plug is configured for electrical interconnection and the second conductive plug is configured as an anti-stiction bump; a MEMS device configured on the MEMS substrate and electrically coupled with the first conductive plug; and a cap substrate bonded to the MEMS substrate such that the MEMS device is enclosed therebetween.
Abstract:
Disclosed are MEMS accelerometers and methods for fabricating same. An exemplary accelerometer comprises a substrate, and a proof mass that is a portion of the substrate and which is separated from the substrate surrounding it by a gap. An electrically-conductive anchor is coupled to the proof mass, and a plurality of electrically-conductive suspension anus that are separated from the proof mass extend from the anchor and are coupled to the substrate surrounding the proof mass. A plurality of sense and actuation electrodes are separated from the proof mass by gaps and are coupled to processing electronics. Capacitive sensing is used to derive electrical signals caused by forces exerted on the proof mass, and the electrical signals are processed by the processing electronics to produce x-, y- and z-direction acceleration data. Electrostatic actuation is used to induce movements of the mass for force balance operation, or self-test and self-calibration. The fabrication methods use deep reactive ion etch bulk micromachining and surface micromachining to form the proof mass, suspension arms and electrodes. The anchor, suspension arms and electrodes are made in the same process steps from the same electrically conductive material, which is different from the substrate material.
Abstract:
A micro-nano channel structure, a method for manufacturing the micro-nano channel structure, a sensor, a method for manufacturing the sensor, and a microfluidic device are provided. The micro-nano channel structure includes: a base substrate; a base layer, on the base substrate and including a plurality of protrusions; a channel wall layer, on a side of the plurality of the protrusions away from the base substrate, the channel wall layer has a micro-nano channel; a recessed portion is provided between adjacent protrusions of the plurality of the protrusions, an orthographic projection of the micro-nano channel on the base substrate is located within an orthographic projection of the recessed portion on the base substrate. The micro-nano channels have a high resolution or an ultra-high resolution, and have different sizes and shapes.
Abstract:
A method for manufacturing an MEMS torsional electrostatic actuator comprises: providing a substrate, wherein the substrate comprises a first silicon layer, a buried oxide layer and a second silicon layer that are laminated sequentially; patterning the first silicon layer and exposing the buried oxide layer to form a rectangular upper electrode plate separated from a peripheral region, wherein the upper electrode plate and the peripheral region are connected by only using a cantilever beam, and forming, on the peripheral region, a recessed portion exposing the buried oxide layer; patterning the second silicon layer and exposing the buried oxide layer to form a back cavity, wherein the back cavity is located in a region of the second silicon layer corresponding to the upper electrode plate, covers 40% to 60% of the area of the region corresponding to the upper electrode plate, and is close to one end of the cantilever beam; exposing the second silicon layer, and suspending the upper electrode plate and the cantilever beam; and respectively forming an upper contact electrode and a lower contact electrode on the second silicon layer.
Abstract:
A method for manufacturing an MEMS torsional electrostatic actuator comprises: providing a substrate, wherein the substrate comprises a first silicon layer, a buried oxide layer and a second silicon layer that are laminated sequentially; patterning the first silicon layer and exposing the buried oxide layer to form a rectangular upper electrode plate separated from a peripheral region, wherein the upper electrode plate and the peripheral region are connected by only using a cantilever beam, and forming, on the peripheral region, a recessed portion exposing the buried oxide layer; patterning the second silicon layer and exposing the buried oxide layer to form a back cavity, wherein the back cavity is located in a region of the second silicon layer corresponding to the upper electrode plate, covers 40% to 60% of the area of the region corresponding to the upper electrode plate, and is close to one end of the cantilever beam; exposing the second silicon layer, and suspending the upper electrode plate and the cantilever beam; and respectively forming an upper contact electrode and a lower contact electrode on the second silicon layer.