Abstract:
A system and method is disclosed for providing mechanical planarization of a sequential build up substrate for an integrated circuit package. A planarization plate is placed in contact with an uneven external surface of a dielectric layer that covers underlying functional circuit elements and filler circuit elements. A heating element in the planarization plate flattens protruding portions of the external surface of the dielectric layer to create a flat external surface on the dielectric layer. After the flat external surface of the dielectric layer has cooled, it is then covered with a metal conductor layer. The method of the present invention increases the number of sequential buildup layers that may be placed on a sequential buildup substrate.
Abstract:
A flat filter layer is received between upper and lower mold portions of a mold for packaging an integrated circuit sensor device, held by the mold over and in contact with the integrated circuit's sensing surface, in light compression between the sensing surface and a mold surface. The filter layer includes slots allowing passage of injected encapsulating material to cover the integrated circuit die, with overlap portions embedded in the encapsulating material, while preventing such encapsulating material from flowing onto the sensing surface. The filter layer may be, for example, a liquid and/or light filter, and may include a protective or supportive backing. The filter is thus affixed to the packaged integrated circuit sensor device, while mold residue is reduced and mold life extended.
Abstract:
A system and method is disclosed for providing a redistribution metal layer in an integrated circuit. The redistribution metal layer is formed from the last metal layer in the integrated circuit during manufacture of the integrated circuit before final passivation is applied. The last metal layer provides sites for solder bump pads used in flip chip interconnection. The redistribution metal layer can be (1) a flat layer deposited over the next to last metal layer through an opening in a dielectric layer, or (2) deposited over an array of vias connected to the next to last metal layer. Space between the solder bump pads is deposited with narrower traces for connecting active circuit areas below. A final passivation layer is deposited to ensure product reliability.
Abstract:
A system and method is disclosed for using a pre-formed film in a transfer molding process of the type that uses a transfer mold to encapsulate portions of an integrated circuit with a molding compound. A film of compliant material is pre-formed to conform the shape of the film to a mold cavity surface of the transfer mold. The pre-formed film is then placed adjacent to the surfaces of the mold cavity of the transfer mold. The mold cavity is filled with molding compound and the integrated circuit is encapsulated. The pre-formation of the film allows materials to be used that are not suitable for use with prior art methods.
Abstract:
A system and method is disclosed for aligning an integrated circuit die on an integrated circuit substrate. A plurality of deposits of deformable material are placed on the substrate where the integrated circuit die is to be aligned. In one advantageous embodiment a stamping tool is indexed to a first tooling hole and to a second tooling hole in the substrate. The stamping tool imprints the deposits of deformable material to a tolerance of less than one hundred microns with respect to the first and second tooling holes. The imprinted portions of the deposits to form a pocket for receiving the integrated circuit die. This enables the integrated circuit die to be precisely aligned on the substrate in three dimensions.
Abstract:
A method for removing heat from an active area of an integrated circuit device is provided. The method includes applying a separator to the active area of the integrated circuit device. A thermally conductive element is coupled to the active area of the integrated circuit device outwardly of the separator.
Abstract:
An integrated circuit (IC) device comprising: 1) an integrated circuit (IC) die having a first surface, a second surface opposite the first surface, and sidewalls extending between the first surface and the second surface; 2) an integrated circuit (IC) package for supporting the IC die, wherein the IC package is attached to at least one of the sidewalls of the IC die such that at least a portion of the IC die first surface and at least a portion of the IC die second surface are exposed; and 3) at least one auxiliary component attached to at least one of the exposed portion of the IC die first surface and the exposed portion of the IC die second surface.