Abstract:
A specimen processing apparatus performs processing on a specimen contained in a container. The specimen processing apparatus includes: holders having different shapes, each of the holders being configured to hold the container; a holder placement unit that comprises holder receiving portions having different shapes, the shapes of the holder receiving portions corresponding to the shapes of the holders; and a specimen processing unit that performs processing on the specimen contained in the container held by one of the holders placed on the holder placement unit.
Abstract:
A fluorescence image analyzer, analyzing method, and pretreatment evaluation method capable of determining with high accuracy whether a sample is positive or negative are provided. A pretreatment part performs pretreatment including a step of labeling a target site with a fluorescent dye to prepare a sample. A fluorescence image analyzer measures and analyzes the sample. The fluorescent image analyzer includes light sources to irradiate light on the sample, imaging part to capture the fluorescent light given off from the sample irradiated by light, and processing part for processing the fluorescence image captured by the imaging part. The processing part extracts the bright spot of fluorescence generated from the fluorescent dye that labels the target site from the fluorescence image for each of a plurality of cells included in the sample, and generates information used for determining whether the sample is positive or negative based on the bright spots extracted for each of the plurality of cells.
Abstract:
A flow cytometer, in which detection of light generated from a particle is less likely to be affected by change in a flow velocity of a liquid flowing in a flow cell, is provided. The flow cytometer includes: a flow cell (10) in which a liquid flows; a liquid sending unit (40) configured to send the liquid into the flow cell (10); a controller (300) configured to obtain information related to a flow velocity of the liquid flowing in the flow cell (10); a light source (121) configured to irradiate the liquid flowing in the flow cell (10) with light; and a detector (162) configured to detect light generated from a particle in the liquid irradiated with light. The controller (300) changes a liquid sending condition for the liquid sending unit (40), based on the obtained information related to the flow velocity.
Abstract:
A fluorescence image analyzer, analyzing method, and pretreatment evaluation method capable of determining with high accuracy whether a sample is positive or negative are provided. A pretreatment part 20 performs pretreatment including a step of labeling a target site with a fluorescent dye to prepare a sample 20a. A fluorescence image analyzer 10 measures and analyzes the sample 20a. The fluorescent image analyzer 10 includes light sources 121 to 124 to irradiate light on the sample 20a, imaging part 154 to capture the fluorescent light given off from the sample 20a irradiated by light, and processing part 11 for processing the fluorescence image captured by the imaging part 154. The processing part 11 extracts the bright spot of fluorescence generated from the fluorescent dye that labels the target site from the fluorescence image for each of a plurality of cells included in the sample 20a, and generates information used for determining whether the sample 20a is positive or negative based on the bright spots extracted for each of the plurality of cells.
Abstract:
A pretreatment apparatus includes a sample dispensing part 240, a reagent dispensing part 280 for dispensing a labeling reagent, a first process part 210 having a centrifuge device for performing a centrifugation process, a second process part 220, and a control part for distributing the dispensing destination of the sample to either the first sample container 217 or the second sample container 227 according to whether centrifugation process is required for the sample.
Abstract:
Disclosed is an optical system including: a light source configured to emit light; an irradiation optical system including a diffractive optical element on which the light is incident, the irradiation optical system being configured to apply illumination light in which a plurality of diffracted lights generated by the diffractive optical element are distributed; a flow cell in which a sample containing cells is caused to flow to a position at which the illumination light is applied by the irradiation optical system; and a light receiver configured to receive light generated from each cell flowing in the flow cell, upon application of the illumination light by the irradiation optical system. The illumination light includes zero-order diffracted light whose relative intensity relative to another diffracted light is not greater than 10 times. The irradiation optical system applies the illumination light to a position through which the cell in the flow cell passes.
Abstract:
A blood analyzer comprises a light source unit configured to irradiate light on a measurement sample prepared from blood, a fluorescent light detecting unit configured to detect auto-fluorescence produced by red blood cells in the measurement sample which is irradiated by light, an information processing unit configured to obtain auto-fluorescence information related to red blood cells which produce auto-fluorescence detected by the fluorescent light detecting unit. The information processing unit is configured to make a determination regarding anemia based on the auto-fluorescence information.
Abstract:
Disclosed is a sample analyzer that includes: a measurement unit configured to apply light to a measurement specimen containing a plurality of kinds of target substances each labeled with fluorescence, and detect a plurality of kinds of fluorescences having different wavelengths; and a processing unit configured to analyze the plurality of kinds of target substances based on a detection result from the measurement unit, and information, on a color of fluorescence, which is set to be variable so as to correspond to the plurality of kinds of target substances.
Abstract:
Disclosed is a fluorescence image analyzing apparatus including a light source that emits light to a sample including a plurality of cells labeled with a fluorescent dye at a target site, an imaging unit that captures a fluorescence image of each of the cells that emit fluorescence by being irradiated with the light, a fluorescence image of the cell, and a processing unit that processes the fluorescence image captured by the imaging unit to acquire a bright spot pattern of fluorescence in the fluorescence image. The processing unit selects a reference pattern corresponding to a measurement item of the sample from a plurality of reference patterns corresponding to a plurality of measurement items and generates information used for determination of the sample based on the bright spot pattern of fluorescence in the fluorescence image and the selected reference pattern.
Abstract:
A blood cell analyzer comprising a flow cell configured to flow a measurement specimen containing blood cells, a first light source configured to emit light having a first wavelength, a second light source configured to emit light having a second wavelength different from the first wavelength, a first light receiving portion configured to receive first scattered light generated by irradiating the blood cells in the measurement specimen with light from the first light source, a second light receiving portion configured to receive second scattered light generated by irradiating the blood cells in the measurement specimen with light from the second light source, and a control section configured to classify at least white blood cells from the blood cells contained in the measurement specimen, based on a detection signal output from the first light receiving portion and a detection signal output from the second light receiving portion.