摘要:
A method of making a semiconductor light emitting device including: (A) an underlying layer configured to be formed on a major surface of a substrate having a {100} plane as the major surface; (B) a light emitting part; and (C) a current block layer, wherein the underlying layer is composed of a III-V compound semiconductor and is formed on the major surface of the substrate by epitaxial growth, the underlying layer extends in parallel to a direction of the substrate, a sectional shape of the underlying layer obtained when the underlying layer is cut along a virtual plane perpendicular to the direction of the substrate is a trapezoid, and oblique surfaces of the underlying layer corresponding to two oblique sides of the trapezoid are {111}B planes, and the top surface of the underlying layer corresponding to an upper side of the trapezoid is a {100} plane.
摘要:
There is provided a semiconductor light-emitting device capable of an attempt to further decrease a leakage current in a current-blocking layer and including (A) a light-emitting portion (20) composed of a first compound semiconductor layer (abbreviated as a layer hereinafter) (21) having a first conductivity type, an active layer (23), and a second layer (22) having a second conductivity type, and (B) a current-blocking layer (40) in contact with the side of the light-emitting portion and composed of a third layer (43) having the first conductivity type and a fourth layer (44) having the second conductivity type, wherein the impurity for imparting the first conductivity type to the first layer (21) includes an impurity in the first layer (21) at a substitution site which is uncompetitive with a substitution site of the impurity in the second layer (22), for imparting the second conductivity type to the second layer (22), and the impurity for imparting the first conductivity type to the third layer (43) includes an impurity in the third layer (43) at a substitution site which is competitive with a substitution site of the impurity in the fourth layer (44), for imparting the second conductivity type to the fourth layer (44).
摘要:
Disclosed herein is a semiconductor light emitting device including: (A) an underlying layer configured to be formed on a major surface of a substrate having a {100} plane as the major surface; (B) a light emitting part; and (C) a current block layer, wherein the underlying layer is composed of a III-V compound semiconductor and is formed on the major surface of the substrate by epitaxial growth, the underlying layer extends in parallel to a direction of the substrate, a sectional shape of the underlying layer obtained when the underlying layer is cut along a virtual plane perpendicular to the direction of the substrate is a trapezoid, and oblique surfaces of the underlying layer corresponding to two oblique sides of the trapezoid are {111}B planes, and the top surface of the underlying layer corresponding to an upper side of the trapezoid is a {100} plane.
摘要:
Disclosed herein is a semiconductor light emitting device including: a light emitting part formed of a multilayer structure arising from sequential stacking of a first compound semiconductor layer, an active layer, and a second compound semiconductor layer; a current block layer; and a burying layer, wherein a planar shape of the active layer is a strip shape in which a width of a center part is smaller than a width of both end parts, the current block layer is composed of third and fourth compound semiconductor layers, the burying layer is formed of a multilayer structure arising from sequential stacking of a first burying layer and a second burying layer, and an impurity for causing the second burying layer is such that a substitution site of the impurity in the second burying layer does not compete with a substitution site of an impurity in the third compound semiconductor layer.
摘要:
Disclosed herein is a semiconductor light emitting device including: (A) an underlying layer configured to be formed on a major surface of a substrate having a {100} plane as the major surface; (B) a light emitting part; and (C) a current block layer, wherein the underlying layer is composed of a III-V compound semiconductor and is formed on the major surface of the substrate by epitaxial growth, the underlying layer extends in parallel to a direction of the substrate, a sectional shape of the underlying layer obtained when the underlying layer is cut along a virtual plane perpendicular to the direction of the substrate is a trapezoid, and oblique surfaces of the underlying layer corresponding to two oblique sides of the trapezoid are {111}B planes, and the top surface of the underlying layer corresponding to an upper side of the trapezoid is a {100} plane.
摘要:
A semiconductor light-emitting device configured to decrease a leakage current in a current-blocking layer and including a light-emitting portion composed of a first compound semiconductor layer having a first conductivity type, an active layer, and a second layer having a second conductivity type, and a current-blocking layer in contact with the side of the light-emitting portion and composed of a third layer having the first conductivity type and a fourth layer having the second conductivity type.
摘要:
Disclosed herein is a semiconductor light emitting device including: a light emitting part formed of a multilayer structure arising from sequential stacking of a first compound semiconductor layer, an active layer, and a second compound semiconductor layer; a current block layer; and a burying layer, wherein a planar shape of the active layer is a strip shape in which a width of a center part is smaller than a width of both end parts, the current block layer is composed of third and fourth compound semiconductor layers, the burying layer is formed of a multilayer structure arising from sequential stacking of a first burying layer and a second burying layer, and an impurity for causing the second burying layer is such that a substitution site of the impurity in the second burying layer does not compete with a substitution site of an impurity in the third compound semiconductor layer.
摘要:
A semiconductor light-emitting device capable of improving device characteristics such as life and reliability is provided. A current confinement layer includes a non-oxidized region made of AlAs or the like corresponding to a current injection region in an active layer, and an oxidized region made of aluminum oxide corresponding to a non-current injection region. The oxidized region is formed by forming a non-oxidized layer made of AlAs or the like and then oxidizing part of the non-oxidized layer at a temperature from 240° C. to less than 375° C. The thickness of the oxidized region is preferably from 10 nm to 1000 nm. The width of the one side of the oxidized region is one time or more of the width of the non-oxidized region or seven times or less thereof The distance between current confinement layer and the active layer is preferably 50 nm or more, or 500 nm or less, and more preferably 180 nm or more.
摘要:
A semiconductor light-emitting device capable of improving device characteristics such as life and reliability is provided. A current confinement layer includes a non-oxidized region made of AlAs or the like corresponding to a current injection region in an active layer, and an oxidized region made of aluminum oxide corresponding to a non-current injection region. The oxidized region is formed by forming a non-oxidized layer made of AlAs or the like and then oxidizing part of the non-oxidized layer at a temperature from 240° C. to less than 375° C. The thickness of the oxidized region is preferably from 10 nm to 1000 nm. The width of the one side of the oxidized region is one time or more of the width of the non-oxidized region or seven times or less thereof. The distance between current confinement layer and the active layer is preferably 50 nm or more, or 500 nm or less, and more preferably 180 nm or more.
摘要:
A semiconductor light-emitting device capable of improving device characteristics such as life and reliability is provided. A current confinement layer includes a non-oxidized region made of AlAs or the like corresponding to a current injection region in an active layer, and an oxidized region made of aluminum oxide corresponding to a non-current injection region. The oxidized region is formed by forming a non-oxidized layer made of AlAs or the like and then oxidizing part of the non-oxidized layer at a temperature from 240° C. to less than 375° C. The thickness of the oxidized region is preferably from 10 nm to 1000 nm. The width of the one side of the oxidized region is one time or more of the width of the non-oxidized region or seven times or less thereof The distance between current confinement layer and the active layer is preferably 50 nm or more, or 500 nm or less, and more preferably 180 nm or more.