Abstract:
A laser crystallization method includes forming a plurality of first protrusions and depressions on a surface of an amorphous silicon layer, wherein a first protrusion and an adjacent first depression of the plurality of first protrusions and depressions, together, have a first pitch, and irradiating the amorphous silicon layer with a laser beam to form a polycrystalline silicon layer.
Abstract:
Provided is a liquid crystal display including: a lower display panel including a lower insulating substrate and a lower reflective layer; an upper display panel including an upper insulating substrate and an upper reflective layer; a liquid crystal layer positioned between the lower reflective layer of the lower display panel and the upper reflective layer of the upper display panel; and a backlight unit positioned on a lower portion of the lower display panel and including a light source, wherein a pair of field generating electrodes are formed in at least one display panel of the lower display panel and the upper display panel, wherein microcavities are formed in the lower reflective layer, the upper reflective layer, and the liquid crystal layer, and wherein a wavelength and luminance of light resonated and emitted in the microcavities are changed by an electric field generated by the field generating electrodes.
Abstract:
A laser crystallizing apparatus includes a laser generator that generates an incident laser beam that includes a P polarization component and an S polarization component, an optical system that converts the incident laser beam to generate an emitted laser beam, and a stage on which is mounted a target substrate with a target thin film which is laser-crystallized by being irradiated by the emitted laser beam. The optical system includes at least one half wave plate (HWP) that shifts a polarization axis direction of the incident laser beam received from the laser generator, at least one mirror that fully reflects the laser beam, and at least one polarization beam splitter (PBS) which reflects a part of the laser beam and transmits the other part of the laser beam.
Abstract:
The present invention provides a display device including: a plurality of display panels including display areas, and non-display areas positioned alongside the display areas; an optical member having one side connected to a part of one of the display areas and an opposing side extending over an adjacent non-display area, the optical member configured to magnify an image from the part of one of the display areas and to project the magnified image over the adjacent non-display area. A multi panel display device according to the exemplary embodiment of the present invention may prevent the phenomena of image discontinuity and image distortion at edges between the display panels, and adjust a polarization characteristic to provide a high-quality large screen capable of implementing a 3D image and the like.
Abstract:
A backlight assembly includes a light source unit configured to supply light, a light guide plate configured to guide light incident from the light source unit to an upper surface thereof, a reverse prism sheet disposed on the light guide plate and having a prism-shaped lower surface and an auxiliary film disposed between the light guide plate and the reverse prism sheet, in which the light guide plate includes a light-incident portion on which light is incident from the light source unit and a light-facing portion facing the light-incident portion.
Abstract:
A laser crystallizing apparatus includes a laser generator that generates an incident laser beam that includes a P polarization component and an S polarization component, an optical system that converts the incident laser beam to generate an emitted laser beam, and a stage on which is mounted a target substrate with a target thin film which is laser-crystallized by being irradiated by the emitted laser beam. The optical system includes at least one half wave plate (HWP) that shifts a polarization axis direction of the incident laser beam received from the laser generator, at least one mirror that fully reflects the laser beam, and at least one polarization beam splitter (PBS) which reflects a part of the laser beam and transmits the other part of the laser beam.
Abstract:
A lighting unit for a display device includes: a plurality of light sources which emits light; a wedge-shaped light guide having an incident surface disposed close to the light sources and an opposing surface disposed opposite the incident surface; and a lens sheet disposed on the light guide, where the lens sheet includes a plurality of lenses, each having an axis in a direction from the incident surface to the opposing surface, where the light guide is thinner at the incident surface than at the opposing surface, and a radius of curvature of each of the lenses is larger at the incident surface than the opposing surface.
Abstract:
A polarization module and a laser exposure apparatus have a polarization module including a first lens and a second lens that reduce a one-directional length of a cross-section of an incident laser beam having an optical axis. A polarization beam splitter divides the laser beam passing through the first and second lenses into two laser beams that are polarized in different directions with respect to each other. A first prism lens and a second prism lens emit an output laser beam by controlling the two laser beams that are divided by the polarization beam splitter to positions that are symmetrical with respect to the optical axis. At least one half wave plate is disposed between the polarization beam splitter and the first prism lens.
Abstract:
A backlight assembly includes a light source unit configured to supply light, a light guide plate configured to guide light incident from the light source unit to an upper surface thereof, a reverse prism sheet disposed on the light guide plate and having a prism-shaped lower surface and an auxiliary film disposed between the light guide plate and the reverse prism sheet, in which the light guide plate includes a light-incident portion on which light is incident from the light source unit and a light-facing portion facing the light-incident portion.
Abstract:
A laser crystallization apparatus and an organic light-emitting diode (OLED) display manufactured using the same are disclosed. In one aspect, the apparatus includes a stage configured to receive a target substrate having an amorphous silicon layer formed thereon and a first laser unit configured to crystalize the amorphous silicon layer so as to form a polycrystalline silicon layer. The polycrystalline silicon layer includes a plurality of protrusions. The apparatus also includes a second laser unit configured to remove at least part of the protrusions.