摘要:
A display device according to the present disclosure includes: a color conversion panel; and a display panel overlapping the color conversion panel, wherein the color conversion panel includes a color conversion layer including a nano-crystalline semiconductor and a transmission layer, the display panel includes a first display panel including a first substrate and a thin film transistor disposed on the first substrate, a second display panel including a second substrate and overlapping the first display panel. The first substrate and the second substrate have different thicknesses.
摘要:
An array substrate includes a thin film transistor which includes a gate electrode electrically connected to a gate line, a source electrode electrically connected to a data line, a drain electrode and an active layer, a first electrode electrically connected to the drain electrode and disposed at a pixel area, and a second electrode covering an upper and a side surface of the source electrode. The second electrode is spaced apart from the first electrode.
摘要:
Exemplary embodiments of the present disclosure provide a thin film transistor array panel including a first insulating substrate; a gate line and a data line disposed on the first insulating substrate, intersecting with each other, and being insulated from each other; a first passivation layer disposed on the gate line and the data line and comprising a plurality of first openings; a first electrode disposed on the first passivation layer; and a second electrode disposed in the first opening, thereby simplifying a manufacturing process of the thin film transistor array panel.
摘要:
A method of forming a metal pattern is disclosed. According to the method, a gate electrode and a pixel electrode are formed on a substrate. A metal layer is formed covering the gate electrode and the pixel electrode. A photo pattern is formed wherein a thickness of an area of the photo pattern that overlaps the gate electrode is smaller than a thickness of other areas of the photo pattern. The photo pattern is soft-baked. The photo pattern is exposed to light. The photo pattern is developed to expose a portion of the metal layer that overlaps the gate electrode. The exposed portion of the metal layer is removed to form a source electrode and a drain electrode, the source electrode and the drain electrode being spaced apart from each other with respect to the gate electrode.
摘要:
A sensor substrate includes a blocking pattern disposed on a base substrate, a first electrode disposed on the base substrate and overlapping the blocking pattern, the first electrode including a plurality of first unit parts arranged in a first direction, each of the first unit parts including a plurality of lines connected to each other in a mesh-type arrangement, a color filter layer disposed on the base substrate, a plurality of contact holes defined in the color filter layer and exposing the first unit parts, and a bridge line between and connected to first unit parts adjacent to each other in the first direction, through the contact holes.
摘要:
A sensor substrate includes a blocking pattern disposed on a base substrate, a first electrode disposed on the base substrate and overlapping the blocking pattern, the first electrode including a plurality of first unit parts arranged in a first direction, each of the first unit parts including a plurality of lines connected to each other in a mesh-type arrangement, a color filter layer disposed on the base substrate, a plurality of contact holes defined in the color filter layer and exposing the first unit parts, and a bridge line between and connected to first unit parts adjacent to each other in the first direction, through the contact holes.
摘要:
A display device according to the present disclosure includes: a color conversion panel; and a display panel overlapping the color conversion panel, wherein the color conversion panel includes a color conversion layer including a nano-crystalline semiconductor and a transmission layer, the display panel includes a first display panel including a first substrate and a thin film transistor disposed on the first substrate, a second display panel including a second substrate and overlapping the first display panel. The first substrate and the second substrate have different thicknesses.
摘要:
An organic light-emitting diode display including a substrate, a first transistor, and an organic light-emitting element. The first transistor is positioned on the substrate. The first transistor includes a first active layer including a first source region, a first channel region extending from the first source region, a first drain region extending from the first channel region, a first conductive pattern, and a first gate electrode positioned on the first active layer. The organic light-emitting element is connected to the first transistor. The first conductive pattern is in contact with the first active layer and covers the first source region and the second source region.
摘要:
A display, includes: a substrate; first signal lines (FSLs) disposed on the substrate and extending in substantially a first direction; a gate insulating layer (GIL) disposed on the FSLs; a first electrode disposed on the GIL; a thin film transistor (TFT) connected to a FSL of the FSLs and including the GIL and the first electrode; a pixel electrode (PE) extending in substantially the first direction, connected to the TFT, and configured to receive a data voltage from the TFT; a common electrode (CE) overlapping with at least a portion of the PE; and a first insulating layer disposed between the PE and CE. One of the PE and the CE has a planar shape and the other includes branch electrodes overlapping with the planar shape and extending substantially parallel to the FSL. At least a portion of the CE overlaps with at least a portion of the FSL.
摘要:
A manufacturing method includes forming a gate member and a common electrode line on a substrate. A gate insulating layer is formed on the gate member and the common electrode line. A semiconductor member and a data member are formed on the gate insulating layer. A first passivation layer is formed on the semiconductor member and the data member. A plurality of color filters is formed on the first passivation layer. A conductor layer and a second passivation layer are formed on the plurality of color filters. A first contact hole exposes a common electrode. A second contact hole exposes the drain electrode. The first and second contact holes are formed by a photolithography process. A pixel electrode connected to the drain electrode is formed through the first contact hole. A connecting member connected to the common electrode line and the common electrode is formed through the second contact hole.