Abstract:
A method of manufacturing a color filter substrate includes forming a plurality of trenches having a predetermined depth by etching a surface of a transparent substrate, disposing a color filter material in the plurality of trenches to form a color filter layer, and forming a transparent electrode on the transparent substrate including the color filter layer therein.
Abstract:
A thin film transistor panel includes an insulating substrate, a gate insulating layer disposed on the insulating substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopper disposed on the oxide semiconductor layer, and a source electrode and a drain electrode disposed on the etch stopper.
Abstract:
A display substrate and its fabricating method have been disclosed. In a horizontal-field-mode liquid crystal display device, while maintaining five mask processes, additional direct contact has been formed to implement a narrow bezel.
Abstract:
Disclosed are a display substrate, of which productivity is improved by decreasing five mask (M) processes utilized for fabricating the display substrate used in a liquid crystal display device in a horizontal field (Plane to Line Switching (PLS)) mode to four mask processes, and a method of fabricating the same.
Abstract translation:公开了一种显示基板,其通过将用于制造在水平场(Plane to Line Switching(PLS))模式的液晶显示装置中使用的显示基板的五个掩模(M)处理减少到四个掩模处理 ,及其制造方法。
Abstract:
A thin film transistor panel includes an insulating substrate, a gate insulating layer disposed on the insulating substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopper disposed on the oxide semiconductor layer, and a source electrode and a drain electrode disposed on the etch stopper.
Abstract:
Rather than forming a data line continuously extending in one layer of a thin film transistor substrate, spaced apart segments of a first data connection pattern are formed in a same first layer as that of the gate lines but extending in a crossing direction. Spaced apart parts of a second data connection pattern are formed in a same second layer as that of the source electrodes of the substrate and also extending in the crossing direction. The segments of the first data connection pattern are connected to successive parts of the second data connection pattern to form completed data lines. In one embodiment, the gate lines of the first layer and the spaced apart segments of a first data connection pattern include a low resistivity metal such as copper.
Abstract:
A thin film transistor panel includes an insulating substrate, a gate insulating layer disposed on the insulating substrate, an oxide semiconductor layer disposed on the gate insulating layer, an etch stopper disposed on the oxide semiconductor layer, and a source electrode and a drain electrode disposed on the etch stopper.
Abstract:
A thin film transistor substrate includes a gate metal pattern comprising a gate line extending in a first direction and a gate electrode electrically connected to the gate line, an active pattern overlapping the gate electrode, an etch-stop layer disposed on the active pattern and having a first through hole and a second through hole adjacent to the first through hole, a data metal pattern comprising a data line extending in a second direction crossing the first direction, a source electrode electrically connected to the active pattern through the first through hole and a drain electrode electrically connected to the active pattern through the second through hole and a first passivation layer disposed on the data metal pattern.