Abstract:
According to example embodiments, a method of forming a multilayer graphene structure includes forming a sacrificial layer on the growth substrate, growing a first graphene layer on the sacrificial layer using a chemical vapor deposition (CVD) method, and growing at least one more graphene layer on the growth substrate. The growing at least one more graphene layer includes removing at least a part of the sacrificial layer.
Abstract:
Provided are a magnetic resistance structure, a method of manufacturing the magnetic resistance structure, and an electronic device including the magnetic resistance structure. The method of manufacturing the magnetic resistance structure includes forming a hexagonal boron nitride layer, forming a graphene layer on the boron nitride layer, forming a first magnetic material layer between the boron nitride layer and the graphene layer according to an intercalation process; and forming a second magnetic material layer on the graphene layer.
Abstract:
A seamless hexagonal h-BN atomic monolayer thin film has a pseudo-single crystal structure including a plurality of h-BN grains that are seamlessly merged. Each of the h-BN grains has a dimension in a range from about 10 μm to about 1,000 μm. The seamless hexagonal boron nitride (h-BN) atomic monolayer thin film may be fabricated by a process including pre-annealing a metal thin film at a first temperature in a chamber while supplying hydrogen gas to the chamber; supplying nitrogen source gas and boron source gas to the chamber; and forming the seamless h-BN atomic monolayer thin film having a pseudo-single crystal atomic monolayer structure having a grain dimension in a range from about 10 μm to about 1,000 μm by annealing the pre-annealed metal thin film at a second temperature.