Abstract:
An image sensor includes a pixel array, a controller, and a plurality of analog-to-digital converters. The pixel array includes a plurality of pixels coupled to column lines, respectively, and the plurality of pixels are configured to sense incident lights to generate analog signals through the column lines. The controller generate a conversion control signal that is configurable based on changes of at least one operational condition. The plurality of analog-to-digital converters are coupled to the column lines, respectively. The plurality of analog-to-digital converters perform a delta-sigma modulation and a digital filtering to convert the analog signals to digital signals. The plurality of analog-to-digital converters adjust a conversion gain internally in response to the conversion control signal.
Abstract:
An analog-to-digital converter includes a modulator, a controller, and a digital filter. The modulator generates a modulated signal based on an analog signal. The controller generates a weight control signal. The digital filter includes a weight signal generator and a first integrator. The weight signal generator generates a weight signal based on the weight control signal. The first integrator generates a digital signal corresponding to the analog signal by integrating the weight signal in response to the modulated signal. The weight control signal corresponds to a type and an order of the digital filter.
Abstract:
An apparatus configured to convert an analog input signal into a digital output signal may include a first amplification circuit configured to receive the analog input signal and a plurality of reference voltages and amplify differences between the analog input signal and the plurality of reference voltages; a plurality of first capacitors configured to respectively store charges corresponding to signals outputted by the first amplification circuit; a second amplification circuit configured to amplify differences among voltages of the plurality of first capacitors; a plurality of second capacitors configured to respectively store charges corresponding to signals outputted by the second amplification circuit; and a comparison circuit configured to generate the digital output signal by comparing voltages of the plurality of second capacitors with each other.
Abstract:
A temperature sensor configured to generate an output signal corresponding to a sensed and/or measured temperature includes: a diode including a cathode coupled to a ground node; a first capacitor including a first end coupled to the ground node; a switch circuit configured to connect a second end of the first capacitor to a positive voltage node or an anode of the diode according to a control signal; switch control circuitry configured to generate the control signal based on a reference voltage with a voltage of the anode; and an output signal generator configured to generate the output signal corresponding to the sensed temperature based on a frequency of the control signal.
Abstract:
An analog-to-digital converter configured to convert an analog signal into a digital signal includes a first converter configured to receive an input signal of an analog type, compare the input signal with a plurality of reference signals, select one of the plurality of reference signals based on the comparison, and output an upper bit that is a portion of the digital signal based on the selected reference signal, a second converter configured to perform an oversampling operation n times based on a residue signal indicating a difference between an upper analog signal corresponding to the upper bit value and the input signal and output an intermediate bit value of the digital signal corresponding to the first to n-th oversampling signals generated respectively during the oversampling operations performed n times, and a third converter configured to output a lower bit value of the digital signal corresponding to the n-th oversampling signal.
Abstract:
An analog-to-digital converter configured to convert an analog signal into a digital signal includes a first converter configured to receive an input signal of an analog type, compare the input signal with a plurality of reference signals, select one of the plurality of reference signals based on the comparison, and output an upper bit that is a portion of the digital signal based on the selected reference signal, a second converter configured to perform an oversampling operation n times based on a residue signal indicating a difference between an upper analog signal corresponding to the upper bit value and the input signal and output an intermediate bit value of the digital signal corresponding to the first to n-th oversampling signals generated respectively during the oversampling operations performed n times, and a third converter configured to output a lower bit value of the digital signal corresponding to the n-th oversampling signal.
Abstract:
An apparatus configured to convert an analog input signal into a digital output signal may include a first amplification circuit configured to receive the analog input signal and a plurality of reference voltages and amplify differences between the analog input signal and the plurality of reference voltages; a plurality of first capacitors configured to respectively store charges corresponding to signals outputted by the first amplification circuit; a second amplification circuit configured to amplify differences among voltages of the plurality of first capacitors; a plurality of second capacitors configured to respectively store charges corresponding to signals outputted by the second amplification circuit; and a comparison circuit configured to generate the digital output signal by comparing voltages of the plurality of second capacitors with each other.
Abstract:
A dynamic amplifier includes an amplifier configured to differentially amplify first and second input signals to generate first and second output signals, a bias circuit, and a variable impedance circuit. The bias circuit is connected between a first power node configured to supply a first source voltage and the amplifier, and configured to apply bias to the amplifier. The variable impedance circuit is connected between the amplifier and a second power node configured to supply a second source voltage that is lower than the first source voltage. The variable impedance circuit is configured to adjust amplification gain of the amplifier, by adjusting impedance based on a magnitude of one among the first and second input signals and the first and second output signals.
Abstract:
An analog-to-digital converter includes a modulator, a controller, and a digital filter. The modulator generates a modulated signal based on an analog signal. The controller generates a weight control signal. The digital filter includes a weight signal generator and a first integrator. The weight signal generator generates a weight signal based on the weight control signal. The first integrator generates a digital signal corresponding to the analog signal by integrating the weight signal in response to the modulated signal. The weight control signal corresponds to a type and an order of the digital filter.