Abstract:
An electronic device controls a driving condition based on an operating state. The device includes a function block, a function monitoring agent, and a driving control module. The function block includes a plurality of function modules. The function monitoring agent is configured to identify one or more activated function modules among the function modules in the function block. The driving control module is configured to determine the driving condition required for an operation of the activated function modules, and based on the determined driving condition, to drive the activated function modules.
Abstract:
An electronic device includes: a display, an antenna structure including at least one antenna, a conductive support disposed between the display and the antenna structure, a sensor disposed between the display and the conductive support, a first printed circuit board disposed between the conductive support and the antenna structure, a second printed circuit board stacked on the first printed circuit board, a board support coupled with the conductive support and overlapping at least part of the second printed circuit board, and a first insulating member comprising an insulating material disposed between the board support and the antenna structure.
Abstract:
A wearable device that is mounted with a fingerprint recognition sensor is provided. The wearable device includes a housing including a first, a second face facing, and a third face facing, a support structure disposed between the first and second faces, a display disposed on the first face to be exposed, and including a window having a first flange and a second flange disposed to be opposite the first face, and a display module coupled to the window to face the second direction, the display being disposed on one face of the support structure, a printed circuit board disposed on another face of the support structure, at least one light emitter mounted adjacent to the first flange to emit light to a first region of the window, and at least one light receptor mounted adjacent to the second flange to receive light reflected from the first region.
Abstract:
A shield can for electromagnetic shielding is provided. The shield can includes a shield cover having a bump protruding laterally therefrom, and a shield frame having a connecting part for selectively fixing the bump at a first height or a second height such that the shield frame is fastened to the shield cover. An electronic device includes a substrate, an internal device mounted on the substrate, and the shield can. The shield cover is located over the internal device, and the shield frame is formed vertically on the substrate to surround the internal device.
Abstract:
An input device may include: (a) a connector that recognizes a connection of an external device; (b) a switch located at an upper end portion of the connector and that connects an electrical signal when a physical input of a threshold pressure or more is pressed; (c) a substrate connected to a connection terminal of the switch and mounted at a surface in which the switch is not located; and/or (d) a key base that presses the switch.
Abstract:
An electronic device and a method thereof are provided. The electronic device includes a memory, a battery, a charging circuit for charging the battery using current supplied from a power supply device, a slew rate variable circuit electrically connected to the charging circuit, and a processor electrically connected to the memory, the battery, the charging circuit, and the slew rate variable circuit. The processor is configured to control the charging circuit to control the charging of the battery, to monitor a state of the electronic device during battery charging, and to control the slew rate variable circuit based on the state of the electronic device to change a slew rate related to the battery charging.
Abstract:
An apparatus for supplying power in a mobile terminal is provided. The apparatus includes a battery, a power management integration circuit including a buck-boost converter for converting a battery voltage to output a specific voltage, and a plurality of regulators for regulating the specific voltage output from the buck-boost converter to voltages of respective corresponding constituent elements and for outputting the regulated voltages, the buck-boost converter operating in a buck mode when the battery voltage is greater than the specific voltage, and the buck-boost converter operating in a boost mode when the battery voltage is less than the specific voltage, such that the constituent elements include a controller for controlling an operation of the mobile terminal, a touch panel for generating an input and for providing the generated input signal to the controller, and a display unit for displaying an operation of the mobile terminal under control of the controller.
Abstract:
An electronic device controls a driving condition based on an operating state. The device includes a function block, a function monitoring agent, and a driving control module. The function block includes a plurality of function modules. The function monitoring agent is configured to identify one or more activated function modules among the function modules in the function block. The driving control module is configured to determine the driving condition required for an operation of the activated function modules, and based on the determined driving condition, to drive the activated function modules.
Abstract:
An electronic device includes a foldable housing including a hinge, a first housing connected to the hinge and including a first surface facing a first direction and a second surface facing a second direction opposite to the first direction, and a second housing connected to the hinge, the second housing including a third surface facing a third direction and a fourth surface facing a fourth direction opposite to the third direction, wherein the first housing and the second housing are foldable relative to each with respect to the hinge, and the first surface faces the third surface in a folded state and the third direction is the same as the first direction in an unfolded state, and a first display forming the first surface and the third surface and extending from the first surface to the third surface.
Abstract:
An electronic device includes: a display, an antenna structure including at least one antenna, a conductive support disposed between the display and the antenna structure, a sensor disposed between the display and the conductive support, a first printed circuit board disposed between the conductive support and the antenna structure, a second printed circuit board stacked on the first printed circuit board, a board support coupled with the conductive support and overlapping at least part of the second printed circuit board, and a first insulating member comprising an insulating material disposed between the board support and the antenna structure.