Abstract:
A sensor device includes a mounting member having fixation surfaces inside, and at least one electronic component directly or indirectly fixed to the fixation surfaces of the mounting member, and the mounting member constitutes a part of a casing for housing the electronic component. Further, the fixation surfaces are perpendicular to each other.
Abstract:
A method for positioning at least one electronic component (3) on a circuit board (1) provided for installation in a vehicle headlamp, wherein the circuit board (1) comprises at least one position mark and the at least one electronic component (3) is positioned relative to the at least one position mark on the circuit board (1), wherein the at least one position mark is detected optically and is used for positioning, wherein the at least one position mark used is at least one alignment mark (5, 6, 7, 8, 8′, 8″) of the circuit board (1) which, in the vehicle headlamp, when the circuit board (1) is installed, interacts mechanically with a positioning means (9, 15) of the vehicle headlamp that is complementary to the alignment mark (5, 6, 7, 8,8′, 8′).
Abstract:
The system includes a first printed circuit board including a first transmission line, the first circuit board may be attached to a chassis and a second printed circuit board including a second transmission line, the second circuit board may be attached to the chassis and/or the first printed circuit board and the second transmission line configured to electrically couple power from the first transmission line.
Abstract:
A connector device for connection with a counter piece for establishing a mechanical and electric connection, wherein the connector device comprises at least two printed circuit board elements each comprising an electrically insulating core and at least one comprising an electrically conductive structure at least partially on the respective electrically insulating core, and at least one embedded component embedded within the respective electrically insulating core and electrically coupled to the respective electrically conductive structure, wherein the at least one electrically conductive structure is arranged at least partially on an exposed surface of the connector device and is configured for establishing the electric connection with the counter piece upon establishing the mechanical connection with the counter piece.
Abstract:
An optical connector assembly, includes: a printed circuit board including a supporting surface and a notch; a fixing portion embedded into the notch and comprising a first surface, a second surface, a lead frame and an electrical pin arranged from the fixing portion to the supporting surface to be flush with the supporting surface, a positioning slot disposed on the first surface; a joint portion comprising a first side, plural openings penetrating the first side, the joint portion extending from an edge of the first side to cover the top of the fixing portion, a positioning pin disposed on the first side; plural chips disposed on the fixing portion; plural fibers inserted through the openings. Wherein the positioning pin is engaged into the positioning slot, such that the fibers are coaxially aligned with the chips for light transmission.
Abstract:
In a method for producing a printed circuit board consisting of at least two printed circuit regions, wherein the printed circuit board regions each comprise at least one conductive layer and/or at least one device or one conductive component, wherein printed circuit board regions to be connected to one another, in the region of in each case at least one lateral surface directly adjoining one another, are connected to one another by a coupling or connection, and wherein, after a coupling or connection of printed circuit board regions, at least one additional layer or ply of the printed circuit board is applied over the printed circuit board regions, the additional layer is embodied as a conductive layer, which is contact-connected via plated-through holes to conductive layers or devices or components integrated in the printed circuit board regions.
Abstract:
The present invention relates to a looping bridge for looping a number of electric signals through from a first electric module having the number of first electric terminals to a second electric module having the number of second electric terminals, said looping bridge comprising: a comb-shaped interconnect structure (100) having the number of first comb teeth (101, 103) and the number of second comb teeth (105, 107), wherein the first comb teeth (101, 103) can be inserted into the first electric terminals and the second comb teeth (105, 107) can be inserted into the second electric terminals, and wherein the first comb teeth (101, 103) are electroconductively connected to the second comb teeth (105, 107), the comb-shaped interconnect structure (100) being embodied as a comb-shaped circuit board.
Abstract:
A connecting member for electrically connecting a circuit board and a component in an electronic device is provided. The connecting member includes at least one bending part configured to comprise elasticity, a pad part connected to the bending part and configured to be attached to one surface of the circuit board, and a fixing part extending from the pad part and configured to fix the connecting member to the circuit board.
Abstract:
An engagement structure for preventing the separation of a resin layer is formed in a contact surface of an insulating substrate in a connecting component, the contact surface being in contact with the resin layer. The resin layer engages with the engagement structure in the contact surface in the insulating substrate in contact with the resin layer, the contact surface forming the side surface of the connecting component.
Abstract:
Printed circuit boards for communications connectors are provided that include a dielectric substrate formed of a first insulative material having a first dielectric constant. First and second pairs of input terminals and first and second pairs of output terminals are provided on the dielectric substrate. A first differential transmission line electrically connect the first pair of input terminals to the first pair of output terminals, and a second differential transmission line electrically connect the second pair of input terminals to the second pair of output terminals. The dielectric substrate includes an opening that is positioned between the conductive paths of the first differential transmission line, the opening containing a second insulative material having a second dielectric constant.