摘要:
A multilayer sliding material which is used, in particular, as the material of the bearings in internal combustion engines, comprising a steel backing layer, a bearing layer of copper-based alloy bonded to the steel backing layer, a silver or silver alloy plating layer bonded to the bearing layer, and a surface layer of lead-based alloy bonded to the silver or silver alloy plating layer, the silver or silver alloy plating layer having a thickness of more than 3 microns but not more than 50 microns. The multilayer sliding material having a thick plating layer of silver or silver alloy, excels in seizure-resisting.
摘要:
A multilayer sliding material for high-speed engine, comprising a steel back metal, a Cu or Cu-base alloy plating layer, a Cu-Pb bearing alloy layer, and an overlay, said steel back metal having 155 or more of Vickers hardness and 42 kgf/mm.sup.2 or more of 0.2% yield strength, a Cu-Pb bearing alloy layer containing 15-30 wt % of Pb and 0.5-2.0 wt % of Sn and having 0.25 cal/cm.s..degree. C. or more of thermal conductivity, 75 or more of Vickers hardness and 18 kgf/mm.sup.2 or more of tensile strength, said overlay of a lead base alloy containing 2-8 wt % of Sn and 3-11 wt % of In and having more than 250.degree. C. of melting start temperature. The material has a superior antiseizure property at high speed of engine. In particular, the rising of the melting start temperature of the metal of the overlay and the thermal conductivity of the bearing alloy provides a superior sliding property of plain bearing at high speed of engine.
摘要:
There is disclose a method of an apparatus for surface-treatment of half sliding bearings having a multi-layer construction including a steel backing, a bearing alloy layer of copper alloy or aluminum alloy, an intermediate plating layer and a surface layer. A plurality of half sliding bearings are attached to a support member in such a manner that the half sliding bearings are arranged end-to-end into a semi-cylindrical configuration. The support member is transferred to be sequentially inserted into a plurality of openable and closable plating cases mounted respectively within pretreatment tanks and plating tanks, thereby sequentially forming the intermediate plating layer and the surface layer on the half sliding bearings.
摘要:
There is disclose a method of and apparatus for surface-treatment of half sliding bearings having a multi-layer construction including a steel backing, a bearing alloy layer of copper alloy or aluminum alloy, an intermediate plating layer and a surface layer. A plurality of half sliding bearings are attached to a support member in such a manner that the half sliding bearings are arranged end-to-end into a semi-cylindrical configuration. The support member is transferred to be sequentially inserted into a plurality of openable and closable plating cases mounted respectively within pretreatment tanks and plating tanks, thereby sequentially forming the intermediate plating layer and the surface layer on the half sliding bearings.
摘要:
Disclosed is a composite plating film for sliding members, essentially containing at least one of the alloy elements selected from tin, indium, antimony, and copper; inorganic particles; and lead; the composition of the composite plating film being:a) at least one of the alloy elements selected from tin, indium, antimony, and copper . . . 2 to 30 weight % in total;b) inorganic particles . . . 0.3 to 25 volume %; andc) lead . . . the balance.
摘要:
A multi-layer type sliding bearing of aluminum alloy and a method of producing the same are disclosed. The multi-layer type sliding bearing includes a mixture layer which has a thickness of not more than 0.5 microns and which is constituted by a mixture of the constituents of the overlay and one element selected from the group consisting of Ni, Co and Fe. The mixture layer is provided between the overlay and a bearing layer of aluminum alloy. In order to prevent fretting, a 0.1 to 5 micron thick plating layer may be provided on the surface of a backing layer of steel which is located on the rear-face side of the bearing. This plating layer consists of the constituents which are the same as those of the overlay.
摘要:
There is disclosed a bearing structure having an excellent fretting resistance. In the bearing structure in which a sliding bearing is mounted at its back face on a housing, and rotatably supports a rotation shaft at an inner face thereof, and a covering layer of an amorphous alloy is formed on at least one of the back face of the sliding bearing and an inner surface of the housing. Thanks to an excellent non-adhesion property of the amorphous alloy, adhesion is less liable to develop between the back face of the bearing and the housing even if a slight friction repeatedly occurs therebetween, thereby imparting an excellent fretting resistance to the bearing structure.
摘要:
Disclosed is a sliding member including an overlay layer made of a Bi based alloy comprising Cu as an essential element and at least one element selected from the group of Sn and In, wherein the Bi based alloy comprises 0.1 to 10 mass % of Cu and 0.5 to 10 mass % in total of the at least one element selected from the group of Sn and In.
摘要:
Disclosed is a sliding member having a bearing alloy layer and a composite plating film provided on the bearing alloy layer. The composite plating film is made of a lead alloy containing 0.1 to 10 mass percent in total of copper and 0.3 to 25 volume percent in total of co-deposited inorganic particles. The outermost surface layer of the composite plating film, which has a thickness proportion of 10 to 40% to the entire thickness of the composite plating film, does not contain inorganic particles and copper. The lower layer of the composite plating film contains Cu and inorganic particles, such as Si3N4, dispersed therein.
摘要翻译:公开了一种具有轴承合金层和设置在轴承合金层上的复合镀膜的滑动构件。 复合镀膜由含有0.1〜10质量%的铜和0.3〜25体积%的共沉积无机粒子的铅合金构成。 与复合镀膜的整个厚度相比,厚度比例为10〜40%的复合镀膜的最外表面层不含有无机粒子和铜。 复合镀膜的下层含有Cu和分散在其中的Si 3 N 4等无机粒子。
摘要:
A multilayer aluminum-base alloy bearing formed by bonding a bearing alloy layer made of an aluminum-base alloy to a steel back metal through an intermediate layer made of an aluminum-base alloy, the intermediate layer being composed of two layers, that is, a lower layer and an upper layer, the lower layer in contact with the steel back metal being lower in hardness than the upper layer. Since the lower layer is soft, it is excellent in bonding property for the back metal, and since the upper layer is hard, it withstands a load exerted on the bearing alloy layer.