Abstract:
In a method of a vertical memory device, insulation layers and sacrificial layers are alternately and repeatedly formed on a substrate. A hole is formed through the insulation layers and the sacrificial layers that expose a top surface of the substrate. Then, an interior portion of the hole may be enlarged. A semiconductor pattern is formed to partially fill the enlarged portion of the hole. A blocking layer, a charge storage layer and a tunnel insulation layer may be formed on a sidewall of the hole and the semiconductor pattern. Then, the tunnel insulation layer, the charge storage layer and the blocking layer are partially removed to expose a top surface of the semiconductor pattern. A channel is formed on the exposed top surface of the semiconductor pattern and the tunnel insulation layer. The sacrificial layers are replaced with gate electrodes.
Abstract:
In a method of a vertical memory device, insulation layers and sacrificial layers are alternately and repeatedly formed on a substrate. A hole is formed through the insulation layers and the sacrificial layers that expose a top surface of the substrate. Then, an interior portion of the hole may be enlarged. A semiconductor pattern is formed to partially fill the enlarged portion of the hole. A blocking layer, a charge storage layer and a tunnel insulation layer may be formed on a sidewall of the hole and the semiconductor pattern. Then, the tunnel insulation layer, the charge storage layer and the blocking layer are partially removed to expose a top surface of the semiconductor pattern. A channel is formed on the exposed top surface of the semiconductor pattern and the tunnel insulation layer. The sacrificial layers are replaced with gate electrodes.
Abstract:
A test interface device includes a serializer, an optical transmitter, an optical receiver, and a deserializer. The serializer receives parallel test signals from automatic test equipment, and serializes the parallel test signals into a serial test signal. The optical transmitter converts the serial test signal into an optical test signal. The optical receiver receives the optical test signal from the optical transmitter, and converts the optical test signal into the serial test signal. The deserializer deserializes the serial test signal into the parallel test signals, and transmits the parallel test signals to a device under test. As a result, signal transfer speed may be improved and optical resource usage may be reduced.
Abstract:
The present disclosure generally relates to a method for producing lens patterns on a roll which is used to produce optical films wherein the method comprises forming a resin film on a roll comprising a plated layer which has been surface-plated with copper (Cu) or nickel (Ni); producing a preliminary lens pattern by striking the surface of the resin film on the roll with a chisel; etching with an etching solution the roll having the preliminary lens pattern formed thereon; and removing the resin film, and a roll for producing optical films comprising lens patterns formed thereon by the same method.
Abstract:
Provides are an insulation device of a single crystal growth device and a single crystal growth device including the same. The insulation device is installed inside a chamber of the single crystal growth device and the insulation device includes a plurality of insulation blocks that are spaced by a first distance.
Abstract:
An apparatus for balancing charge capacity of battery cell includes a voltage sensing/discharging circuit having a battery with cell group, a switching unit for selectively connecting both terminals of each battery cell to conductive lines, capacitor connected to the conductive lines, a voltage amplifying unit connected to both terminals of capacitor via a first switch, and a discharge resistance connected to both terminals of capacitor via a second switch; and a voltage balancing unit for controlling the switching unit in ON state of first switch to connect both terminals of each battery cell to the conductive lines and then sense voltage of each battery cell through the voltage amplifying unit, and controlling the switching unit in OFF state of first switch to charge voltage of balancing-requiring cell to the capacitor and then turning on the second switch to discharge charged voltage of capacitor through the discharge resistance.
Abstract:
A flat panel display device is disclosed. In some embodiments, the flat panel display device has parallel gate and data lines in a display area. In some embodiments, all sub-pixels of each pixel are connected to the same data line and are connected to the same gate line.
Abstract:
A semiconductor device test apparatus is provided. The semiconductor device test apparatus includes a test unit on which a semiconductor device under test is disposed, and an automatic test equipment (ATE) unit that inputs a test signal to the test unit and reads a test result signal output by the test unit. The semiconductor device test apparatus includes an interface unit that is interposed between the test unit and the ATE unit, and that compares the test signal with the test result signal and outputs to the ATE unit comparison signals indicating whether the semiconductor device is a failure or not or whether a specific bit failure has occurred or not.
Abstract:
Methods and apparatuses for encoding and decoding an audio signal are provided, a method of encoding an audio signal including: receiving the audio signal including information about a moving sound source; receiving position information about the moving sound source; generating dynamic track information indicating motion of the moving sound source by using the position information; and encoding the audio signal and the dynamic track information.
Abstract:
The present disclosure relates to an optical sheet for controlling the direction of light rays which is used for manufacturing backlight units of TFT-LCDs for computer monitors and televisions, and more specifically to an optical sheet which can uniformly diffuse light, improve brightness, and adjust viewing angle. There is provided an optical sheet for controlling the direction of light rays comprising a substrate film; a microlens group arranged on a first face of the substrate film; and a plurality of protuberances formed on a second face of the substrate film, wherein each protuberance comprises a reflective layer at the bottom thereof, and the plurality of protuberances comprise an aperture formed therebetween, and wherein a unit microlens of the microlens group has a first side and a second side with different radii of curvature from each other with respect to a light emission control part thereof.