Abstract:
The present invention provides a ferroelectric capacitor, a method for manufacture therefor, and a ferroelectric random access memory (FeRAM) device. The ferroelectric capacitor (100), among other elements, may include a first electrode layer (162) located over a substrate (110), wherein the first electrode layer (162) includes iridium, and an oxide electrode template (164) located over the first electrode layer (162). The ferroelectric capacitor (100) may further include a ferroelectric dielectric layer (165) located over the oxide electrode template (164), and a second electrode layer (170) located over the ferroelectric dielectric layer (165).
Abstract:
Semiconductor devices and fabrication methods are presented, in which a hydrogen barrier is provided above a ferroelectric capacitor to prevent degradation of the ferroelectric material during back-end manufacturing processes employing hydrogen. The hydrogen barrier comprises silicon rich silicon oxide or amorphous silicon, which can be used in combination with an aluminum oxide layer to inhibit diffusion of process-related hydrogen into the ferroelectric capacitor layer.
Abstract:
A dual tunnel barrier magnetic element has a free magnetic layer positioned between first and second tunnel barriers and an electrode over the second tunnel barrier. A two step etch process allows for forming an encapsulation material on a side wall of the electrode and the second tunnel barrier subsequent to the first etch for preventing damage to the first tunnel barrier when performing the second etch to remove a portion of the free layer.
Abstract:
A process of forming an electronic device can include forming a stack including a tunnel barrier layer. The tunnel barrier layer can have a ratio of the metal atoms to oxygen atoms of greater than a stoichiometric ratio, wherein the ratio has a particular value. The process can also include forming a gettering layer having a composition capable of gettering oxygen, and depositing an insulating layer over the gettering layer. The process can further include exposing the insulating layer to a temperature of at least approximately 60° C. In one embodiment, after such exposure, a portion of the gettering layer is converted to an insulating material. In another embodiment, an electronic device can include a magnetic tunnel junction and an adjacent insulating layer lying within an opening in another insulating layer.
Abstract:
A conductive via for connecting between a digit line and one side of the magnetic device is positioned beneath, and aligned with, each magnetic device. Other contacts may satisfy the same design rules, using the same process step. An electrode formed on the conductive via is polished to eliminate step functions or seams originating at the conductive via from propagating up through the various deposited layers. This integration approach allows for improved scaling of the MRAM devices to at least a 45 nanometer node, a cell packing factor approaching 6F2, and a uniform thickness of material between the bit lines and the underlying memory elements.
Abstract:
Hardmasks and fabrication methods are presented for producing ferroelectric capacitors in a semiconductor device, wherein a hardmask comprising aluminum oxide or strontium tantalum oxide is formed above an upper capacitor electrode material, and capacitor electrode and ferroelectric layers are etched to define a ferroelectric capacitor stack.
Abstract:
In accordance with the invention, there are diffusion barriers, integrated circuits, and semiconductor devices and methods of fabricating them. The method of fabricating a diffusion barrier can include providing a dielectric layer, forming a first silicon enriched layer over the dielectric layer by exposing the dielectric layer to a silicon-containing ambient, and forming a barrier layer over the first silicon enriched layer.
Abstract:
A method is disclosed to form a seed layer for an integrated circuit. The method may include depositing a metal seed layer (106) over a barrier layer (104) such that the metal seed layer (106) has a greater thickness along a top surface portion (114) of at least one recessed feature (102) formed in the substrate that is substantially coplanar with the substrate than a sidewall surface portion (112) of the at least one recessed feature (102). A portion of the metal seed layer (106) is etched from the top surface portion (114) of the at least one recessed feature (102) to improve coverage of the metal seed layer (106) along the sidewall surface portion (112) of the at least one recessed feature (102) and to mitigate overhang of the metal seed layer.
Abstract:
Semiconductor devices and fabrication methods are presented, in which a hydrogen barrier is provided above a ferroelectric capacitor to prevent degradation of the ferroelectric material during back-end manufacturing processes employing hydrogen. The hydrogen barrier comprises silicon rich silicon oxide or amorphous silicon, which can be used in combination with an aluminum oxide layer to inhibit diffusion of process-related hydrogen into the ferroelectric capacitor layer.
Abstract:
The present invention forms sidewall diffusion barrier layer(s) that mitigate hydrogen contamination of ferroelectric capacitors. Sidewall diffusion barrier layer(s) of the present invention are formed via a physical vapor deposition process at a low temperature. By so doing, the sidewall diffusion barrier layer(s) are substantially amorphous and provide superior protection against hydrogen diffusion than conventional and/or crystalline sidewall diffusion barrier layers.