摘要:
Provided are a positive electrode active material for nonagueous secondary batteries, the material having a narrow particle-size distribution and a monodisperse property and being capable of increasing a battery capacity; an industrial production method thereof; and a nonaqueous secondary battery using the positive electrode active material and having excellent electrical characteristics. The positive electrode active material is represented by a general formula: Li1+uNixCoyMnzMtO2+α (wherein, 0.05≦u≦0.95, x+y+z+t=1, 0≦x≦0.5, 0≦y≦0.5, 0.5≦z
摘要翻译:本发明提供一种用于非载体二次电池的正极活性物质,其粒径分布窄,单分散性好,能够提高电池容量; 其工业生产方法; 以及使用正极活性物质并具有优异的电特性的非水二次电池。 正极活性物质由以下通式表示:Li1 + uNixCoyMnzMtO2 +α(其中,0.05&nlE; u&nlE; 0.95,x + y + z + t = 1,0,0n1E; x&amp; nlE; 0.5,0和nlE; y&nlE; 0.5,0.5 &nlE; z <0.8,0&nlE; t&nlE; 0.1,M为添加元素,选自Mg,Ca,Al,Ti,V,Cr,Zr,Nb,Mo和W中的至少一种元素) 粒径为3〜12μm,[(d90-d10)/平均粒径]为0.60以下,表示粒径分布的比例。
摘要:
Provided are a positive electrode active material for nonagueous secondary batteries, the material having a narrow particle-size distribution and a monodisperse property and being capable of increasing a battery capacity; an industrial production method thereof; and a nonaqueous secondary battery using the positive electrode active material and having excellent electrical characteristics. The positive electrode active material is represented by a general formula: Li1+uNixCoyMnzMtO2+α (wherein, 0.05≤u≤0.95, x+y+z+t=1, 0≤x≤0.5, 0≤y≤0.5, 0.5≤z
摘要:
Provided is a method for producing a polyacrylic acid (salt)-based water absorbent resin, which is a convenient production method for a water absorbent resin for an absorbent suitable for practical use, the water absorbent resin having a reduced amount of residual monomers. Disclosed is a method for producing a polyacrylic acid (salt)-based water absorbent resin, the method comprising a polymerization step of polymerizing an aqueous monomer solution containing acrylic acid (salt) as a main component; a drying step of drying a water-containing gel-like crosslinked polymer obtained in the polymerization step; a surface crosslinking step of surface crosslinking the water absorbent resin under drying or the water absorbent resin which has been dried; and a packaging step of packaging the surface crosslinked water absorbent resin, wherein an iron content in the aqueous monomer solution in the polymerization step is 2 ppm (relative to the monomer(s)) or less, a moisture content of the water absorbent resin in the packaging step is 1% by weight or more, and the method further comprises, after the packaging step, a storage step of storing the packaged water absorbent resin for 3 days or longer.
摘要:
A titanium material for a polymer electrolyte fuel cell separator consists of, by mass %, a platinum group metal: 0.005% to 0.15% and a rare earth metal: 0.002% to 0.10%, with the balance being Ti and impurities. The titanium material of the present invention is provided with a film formed of a titanium oxide and a platinum group metal on the surface thereof. It is preferred that the film has a thickness of 50 nm or less, and that the concentration of the platinum group metal on the surface of the film is 1.5% by mass or more. With the thus formed film, the titanium material of the present invention is capable of achieving a reduction in initial contact resistance and ensuring good corrosion resistance. In the titanium material of the present invention, the rare earth metal is preferably Y, and the platinum group metal is preferably Pd.
摘要:
At the time of temporary firing for fixing a glass layer 3 to a glass member 4, the glass layer 3 is irradiated with laser light L2 having a ring-shaped irradiation region. At this time, in a width direction of the glass layer 3, two peaks M in a beam profile of the laser light L2 respectively overlap both edge parts 3b of the glass layer 3. This allows a center part 3a and each of both edge parts 3b of the glass layer 3 to be irradiated for shorter and longer times with a part having a relatively high intensity in the laser light L2, respectively. As a consequence, the amount of heat input by irradiation with the laser light L2 is homogenized between the center part 3a and both edge parts 3b in the glass layer 3, whereby the whole glass layer 3 is molten appropriately.
摘要:
A lithium nickel composite oxide, having small inner resistance, large battery capacity and high thermal stability, can be used as a positive electrode active material for a non-aqueous electrolyte secondary battery. The positive electrode active material is composed of the lithium nickel composite oxide of LibNi1-aMaO2 (wherein M represents at least one element selected from a transition metal element other than Ni, the second group element and the thirteenth group element; a satisfies 0.01≦a≦0.5; and b satisfies 0.9≦b≦1.1). This is obtained by filtering and drying the fired powder after water washing, wherein it is dried at 90° C. or lower, till moisture is reduced to 1% or less by mass in drying, and then at 120° C., and under gas atmosphere where content of compound components containing carbon is 0.01% or less by volume, or under vacuum atmosphere.
摘要:
The disclosed process for producing a water-absorbing resin comprising: a polymerization step of polymerizing an aqueous unsaturated monomer; and a drying step of drying a particulated water-containing gel-liked crosslinked polymer, obtained in a finely crushing step during the polymerization or after the polymerization. In the process, the drying step is interrupted with a dryer kept in a heated state and thereafter the drying step is restarted.
摘要:
A glass layer fixing method for manufacturing a glass layer fixing member by fixing a glass layer to a first glass member, includes the steps of disposing the glass layer on the first glass member along a region to be fused, the glass layer containing a glass powder and a laser-absorbing material and irradiating the region to be fused therealong with a first laser beam, so as to melt the glass layer, fix the glass layer to the first glass member, and increase a laser absorptance of the glass layer.
摘要:
A glass layer 3 is irradiated with laser light L2 for temporary firing in order to gasify a binder and melt the glass layer 3, thereby fixing the glass layer 3 to a glass member 4. Here, an irradiation region of the laser light L2 has regions A1, A2 arranged along an extending direction of a region to be fused R and is moved along the region to be fused R such that the region A1 precedes the region A2. The region A2 irradiates the glass layer 3 before the glass layer 3 molten by irradiation with the region A1 solidifies. This makes the glass layer 3 take a longer time to solidify, whereby the binder gasified by irradiation with the region A1 of the laser light L2 is more likely to escape from the glass layer 3.
摘要:
A glass layer 3 is disposed between a glass member 4 and a thermal conductor 7 along a region to be fused. The glass layer 3 is formed by removing an organic solvent and a binder from the paste layer while using the thermal conductor 7 as a hotplate. Then, a laser beam L1 is emitted while using the thermal conductor 7 as a heatsink, so as to melt the glass layer 3, thereby burning and fixing the glass layer 3 onto the glass member 4. Thereafter, another glass member is overlaid on the glass member 4 having the glass layer 3 burned thereonto, such that the glass layer 3 is interposed therebetween. Then, the region to be fused is irradiated therealong with a laser beam, so as to fuse the glass members together.