摘要:
Certain example embodiments of this invention relate to methods of treating the surface of a soda lime silica glass substrate, e.g., a soda lime silica alkali ion glass substrate, and the resulting surface-treated glass articles. More particularly, certain example embodiments of this invention relate to methods of removing a top surface portion of a glass substrate using ion sources. During or after removal of this portion, the glass may then be coated with another layer, to be used as a capping layer. In certain example embodiments, the glass substrate coated with a capping layer may be used as a color filter and/or TFT substrate in an electronic device. In other example embodiments, the glass substrate with the capping layer thereon may be used in a variety of display devices.
摘要:
Certain example embodiments relate to sputter-deposited transparent conductive coatings (TCCs) that are capable of surviving the harsh environments of ovens so that they can be included, for example, in oven door applications. In certain example embodiments, zirconium oxide (e.g., ZrO2 or other suitable stoichiometry) may be used as a protective overcoat to protect an underlying Ag layer from corrosion in the atmosphere. In three lite oven door example embodiments, surface 1 has a TCC pyrolytically disposed thereon, surface 2 has a TCC sputter-deposited thereon and, optionally, surface 3 has a TCC sputter-deposited thereon. In two lite oven door example embodiments, surface 1 has a TCC pyrolytically disposed or sputter-deposited thereon, and surface 2 has a TCC sputter-deposited thereon.
摘要:
Certain example embodiments relate to sputter-deposited transparent conductive coatings (TCCs) that are capable of surviving the harsh environments of ovens so that they can be included, for example, in oven door applications. In certain example embodiments, zirconium oxide (e.g., ZrO2 or other suitable stoichiometry) may be used as a protective overcoat to protect an underlying Ag layer from corrosion in the atmosphere. In certain three lite oven door example embodiments, surfaces 2 and 4 each have an Ag-based TCC sputter-deposited thereon. The Ag-based TCC may have a sheet resistance of about either 4 or 5 ohms/square in certain example embodiments.
摘要:
Certain example embodiments of this invention relate to a window having anti-fungal/anti-bacterial properties and/or self-cleaning properties, and a method of making the same. In certain example embodiments, a silver based layer is be provided and the layer(s) located thereover (e.g., the zirconium oxide inclusive layer) are designed to permit silver particles to migrate/diffuse to the surface over time to kill bacteria/germs at the surface of the coated article thereby creating an anti-bacterial/anti-fungal effect. In certain example embodiments, silver may also or instead be mixed in with other material as the top layer of the anti-bacterial coating.
摘要:
Certain example embodiments of this invention relate to a photovoltaic (PV) device including an electrode such as a front electrode/contact, and a method of making the same. In certain example embodiments, the front electrode has a textured (e.g., etched) surface that faces the photovoltaic semiconductor film of the PV device. The front electrode has a transparent conductive oxide (TCO) film having first and second layers (continuous or discontinuous) of the same material (e.g., zinc oxide, zinc aluminum oxide, indium-tin-oxide, or tin oxide), where the first TCO layer is sputter-deposited using a ceramic sputtering target(s) and the second TCO layer of the same material is sputter-deposited using a metallic or substantially metallic sputtering target(s). This allows the better quality TCO of the film, deposited more slowly via the ceramic target(s), to be formed using the ceramic target and the lesser quality TCO of the film to be deposited more quickly and cost effectively via the metallic target(s). After the etching, most or all of the better quality ceramic-deposited TCO remains whereas much of the lesser quality metallic-deposited TCO of the film was removed during the etching process.
摘要:
Certain example embodiments relate to sputter-deposited transparent conductive coatings (TCCs) that are capable of surviving the harsh environments of ovens so that they can be included, for example, in oven door applications. In certain example embodiments, zirconium oxide (e.g., ZrO2 or other suitable stoichiometry) may be used as a protective overcoat to protect an underlying Ag layer from corrosion in the atmosphere. In three lite oven door example embodiments, surface 1 has a TCC pyrolytically disposed thereon, surface 2 has a TCC sputter-deposited thereon and, optionally, surface 3 has a TCC sputter-deposited thereon. In two lite oven door example embodiments, surface 1 has a TCC pyrolytically disposed or sputter-deposited thereon, and surface 2 has a TCC sputter-deposited thereon.
摘要:
A coated article is provided which may be heat treated thermally tempered) in certain instances. In certain example embodiments, an interlayer of or including a metal oxide such as tin oxide is provided under an infrared (IR) reflecting layer so as to be located between respective layers comprising silicon nitride and zinc oxide. It has been found that the use of such a tin oxide inclusive interlayer results in significantly improved mechanical durability, thermal stability and/or haze characteristics.
摘要:
A photovoltaic device including a rear electrode which may also function as a rear reflector. In certain example embodiments of this invention, the rear electrode includes a metallic based reflective film that is oxidation graded, so as to be more oxided closer to a rear substrate (e.g., glass substrate) supporting the electrode than at a location further from the rear substrate. In other words, the rear electrode is oxidation graded so as to be less oxided closer to a semiconductor absorber of the photovoltaic device than at a location further from the semiconductor absorber in certain example embodiments. In certain example embodiments, the interior surface of the rear substrate may optionally be textured so that the rear electrode deposited thereon is also textured so as to provide desirable electrical and reflective characteristics. In certain example embodiments, the rear electrode may be of or include Mo and/or MoOx, and may be sputter-deposited using a combination of MoOx and Mo sputtering targets.
摘要:
A method of making a window unit is provided which may result in improved yields. In certain example embodiments, the method involves coating a substrate with both (i) a solar control/management coating, and (ii) a protective layer (e.g., of or including diamond-like carbon (DLC)) over the solar control/management coating. The protective layer protects the coated substrate from scratches and/or the like during processing prior to heat treatment. Then, during heat treatment, the protective layer(s) is burned off in part or in whole. Following heat treatment, the coated article (substrate with solar control/management coating thereon) is coupled to another substrate in order to form the window unit.
摘要:
A grey glass composition employing in its colorant portion at least iron (Fe2O3/FeO), cobalt and selenium is provided. The glass allows high visible transmission, and good IR absorption, while at the same time achieving desired grey color. In certain example embodiments, the colorant portion includes, or may consist essentially of: total iron (expressed as Fe2O3)0.20 to 0.35% selenium0.0002 to 0.0020% cobalt oxide0.0025 to 0.0060% titanium oxide 0 to 1.0% glass redox:
摘要翻译:提供在其着色剂部分中至少使用铁(Fe 2 O 3 / FeO),钴和硒的灰色玻璃组合物。 该玻璃允许高可见透射率和良好的红外吸收,同时实现所需的灰色。 在某些示例性实施方案中,着色剂部分包括或可基本上由以下组成:总铁(以Fe 2 O 3表示)0.20至0.35%硒0.0002至0.0020%氧化钴0.0025至0.0060%氧化钛0至1.0%玻璃氧化还原:<=。 27; 或0.10至0.25。