Abstract:
A miniaturized transistor is provided with high yield. Further, a semiconductor device which has high on-state characteristics and which is capable of high-speed response and high-speed operation is provided. In the semiconductor device, an oxide semiconductor layer, a gate insulating layer, a gate electrode layer, an insulating layer, a conductive film, and an interlayer insulating layer are stacked in this order. A source electrode layer and a drain electrode layer are formed in a self-aligned manner by cutting the conductive film so that the conductive film over the gate electrode layer and the conductive layer is removed and the conductive film is divided. An electrode layer which is in contact with the oxide semiconductor layer and overlaps with a region in contact with the source electrode layer and the drain electrode layer is provided.
Abstract:
Described is a method for manufacturing a semiconductor device. A mask is formed over an insulating film and the mask is reduced in size. An insulating film having a projection is formed using the mask reduced in size, and a transistor whose channel length is reduced is formed using the insulating film having a projection. Further, in manufacturing the transistor, a planarization process is performed on a surface of a gate insulating film which overlaps with a top surface of a fine projection. Thus, the transistor can operate at high speed and the reliability can be improved. In addition, the insulating film is processed into a shape having a projection, whereby a source electrode and a drain electrode can be formed in a self-aligned manner.
Abstract:
To provide a miniaturized semiconductor device with stable electric characteristics in which a short-channel effect is suppressed. Further, to provide a manufacturing method of the semiconductor device. The semiconductor device (transistor) including a trench formed in an oxide insulating layer, an oxide semiconductor film formed along the trench, a source electrode and a drain electrode which are in contact with the oxide semiconductor film, a gate insulating layer over the oxide semiconductor film, a gate electrode over the gate insulating layer is provided. The lower corner portions of the trench are curved, and the side portions of the trench have side surfaces substantially perpendicular to the top surface of the oxide insulating layer. Further, the width between the upper ends of the trench is greater than or equal to 1 time and less than or equal to 1.5 times the width between the side surfaces of the trench.
Abstract:
An object is to provide a method for manufacturing a semiconductor device including an oxide semiconductor and having improved electric characteristics. The semiconductor device includes an oxide semiconductor film, a gate electrode overlapping the oxide semiconductor film, and a source electrode and a drain electrode electrically connected to the oxide semiconductor film. The method includes the steps of forming a first insulating film including gallium oxide over and in contact with the oxide semiconductor film; forming a second insulating film over and in contact with the first insulating film; forming a resist mask over the second insulating film; forming a contact hole by performing dry etching on the first insulating film and the second insulating film; removing the resist mask by ashing using oxygen plasma; and forming a wiring electrically connected to at least one of the gate electrode, the source electrode, and the drain electrode through the contact hole.
Abstract:
A miniaturized transistor is provided with high yield. Further, a semiconductor device which has high on-state characteristics and which is capable of high-speed response and high-speed operation is provided. In the semiconductor device, an oxide semiconductor layer, a gate insulating layer, a gate electrode layer, an insulating layer, a conductive film, and an interlayer insulating layer are stacked in this order. A source electrode layer and a drain electrode layer are formed in a self-aligned manner by cutting the conductive film so that the conductive film over the gate electrode layer and the conductive layer is removed and the conductive film is divided. An electrode layer which is in contact with the oxide semiconductor layer and overlaps with a region in contact with the source electrode layer and the drain electrode layer is provided.
Abstract:
An insulating layer is provided with a projecting structural body, and a channel formation region of an oxide semiconductor layer is provided in contact with the projecting structural body, whereby the channel formation region is extended in a three dimensional direction (a direction perpendicular to a substrate). Thus, it is possible to miniaturize a transistor and to extend an effective channel length of the transistor. Further, an upper end corner portion of the projecting structural body, where a top surface and a side surface of the projecting structural body intersect with each other, is curved, and the oxide semiconductor layer is formed to include a crystal having a c-axis perpendicular to the curved surface.
Abstract:
A semiconductor device having a transistor including an oxide semiconductor film is disclosed. In the semiconductor device, the oxide semiconductor film is provided along a trench formed in an insulating layer. The trench includes a lower end corner portion and an upper end corner portion having a curved shape with a curvature radius of longer than or equal to 20 nm and shorter than or equal to 60 nm, and the oxide semiconductor film is provided in contact with a bottom surface, the lower end corner portion, the upper end corner portion, and an inner wall surface of the trench. The oxide semiconductor film includes a crystal having a c-axis substantially perpendicular to a surface at least over the upper end corner portion.
Abstract:
The present invention provides a method for manufacturing a highly reliable semiconductor device with a small amount of leakage current. In a method for manufacturing a thin film transistor, etching is conducted using a resist mask to form a back channel portion in the thin film transistor, the resist mask is removed, a part of the back channel is etched to remove etching residue and the like left over the back channel portion, whereby leakage current caused by the residue and the like can be reduced. The etching step of the back channel portion can be conducted by dry etching using non-bias.
Abstract:
The present invention provides a method for manufacturing a highly reliable semiconductor device with a small amount of leakage current. In a method for manufacturing a thin film transistor, etching is conducted using a resist mask to form a back channel portion in the thin film transistor, the resist mask is removed, a part of the back channel is etched to remove etching residue and the like left over the back channel portion, whereby leakage current caused by the residue and the like can be reduced. The etching step of the back channel portion can be conducted by dry etching using non-bias.