Abstract:
It is an object to provide a semiconductor device including a thin film transistor with favorable electric properties and high reliability, and a method for manufacturing the semiconductor device with high productivity. In an inverted staggered (bottom gate) thin film transistor, an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer, and a buffer layer formed using a metal oxide layer is provided between the semiconductor layer and a source and drain electrode layers. The metal oxide layer is intentionally provided as the buffer layer between the semiconductor layer and the source and drain electrode layers, whereby ohmic contact is obtained.
Abstract:
A semiconductor device that can be miniaturized or highly integrated is provided. The semiconductor device includes a first transistor, a capacitor, and a second transistor stacked in this order. The first and second transistors each include a semiconductor layer, a first conductor over the semiconductor layer, a first insulator, and a second conductor over the first insulator. In each of the first and second transistors, a side surface of the semiconductor layer is aligned with a side surface of the first conductor; the semiconductor layer and the first conductor each have an opening; the first insulator is inside the opening; the first insulator has a depressed portion reflecting the shape of the opening; and a second conductor fills the depressed portion. The second conductor of the first transistor, one of a pair of electrodes of the capacitor, and the semiconductor layer of the second transistor are connected to each other.
Abstract:
A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formulation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
Abstract:
A semiconductor device that operates at high speed. A semiconductor device with favorable switching characteristics. A highly integrated semiconductor device. A miniaturized semiconductor device. The semiconductor device is formed by: fainting a semiconductor film including an opening, on an insulating surface; forming a conductive film over the semiconductor film and in the opening, and removing the conductive film over the semiconductor film to form a conductive pillar in the opening; forming an island-shaped mask over the conductive pillar and the semiconductor film; etching the conductive pillar and the semiconductor film using the mask to form a first electrode and a first semiconductor; forming a gate insulating film on a top surface and a side surface of the first semiconductor; and forming a gate electrode that is in contact with a top surface of the gate insulating film and faces the top surface and the side surface of the first semiconductor.
Abstract:
As a display device has higher definition, the number of pixels is increased and thus, the number of gate lines and signal lines is increased. When the number of gate lines and signal lines is increased, it is difficult to mount IC chips including driver circuits for driving the gate lines and the signal lines by bonding or the like, whereby manufacturing cost is increased. A pixel portion and a driver circuit for driving the pixel portion are provided on the same substrate, and at least part of the driver circuit comprises a thin film transistor including an oxide semiconductor sandwiched between gate electrodes. A channel protective layer is provided between the oxide semiconductor and a gate electrode provided over the oxide semiconductor. The pixel portion and the driver circuit are provided on the same substrate, which leads to reduction of manufacturing cost.
Abstract:
A structure is employed in which a first protective insulating layer; an oxide semiconductor layer over the first protective insulating layer; a source electrode and a drain electrode that are electrically connected to the oxide semiconductor layer; a gate insulating layer that is over the source electrode and the drain electrode and overlaps with the oxide semiconductor layer; a gate electrode that overlaps with the oxide semiconductor layer with the gate insulating layer provided therebetween; and a second protective insulating layer that covers the source electrode, the drain electrode, and the gate electrode are included. Furthermore, the first protective insulating layer and the second protective insulating layer each include an aluminum oxide film that includes an oxygen-excess region, and are in contact with each other in a region where the source electrode, the drain electrode, and the gate electrode are not provided.
Abstract:
It is an object to provide a semiconductor device including a thin film transistor with favorable electric properties and high reliability, and a method for manufacturing the semiconductor device with high productivity. In an inverted staggered (bottom gate) thin film transistor, an oxide semiconductor film containing In, Ga, and Zn is used as a semiconductor layer, and a buffer layer formed using a metal oxide layer is provided between the semiconductor layer and a source and drain electrode layers. The metal oxide layer is intentionally provided as the buffer layer between the semiconductor layer and the source and drain electrode layers, whereby ohmic contact is obtained.
Abstract:
To provide a transistor having highly stable electric characteristics and also a miniaturized structure. Further, also high performance and high reliability of a semiconductor device including the transistor can be achieved. The transistor is a vertical transistor in which a first electrode having an opening, an oxide semiconductor layer, and a second electrode are stacked in this order, a gate insulating layer is provided in contact with side surfaces of the first electrode, the oxide semiconductor layer, and the second electrode, and a ring-shaped gate electrode facing the side surfaces of the first electrode, the oxide semiconductor layer, and the second electrode with the gate insulating layer interposed therebetween is provided. In the opening in the first electrode, an insulating layer in contact with the oxide semiconductor layer is embedded.
Abstract:
To provide a method by which a semiconductor device including a thin film transistor with excellent electric characteristics and high reliability is manufactured with a small number of steps. After a channel protective layer is formed over an oxide semiconductor film containing In, Ga, and Zn, a film having n-type conductivity and a conductive film are formed, and a resist mask is formed over the conductive film. The conductive film, the film having n-type conductivity, and the oxide semiconductor film containing In, Ga, and Zn are etched using the channel protective layer and gate insulating films as etching stoppers with the resist mask, so that source and drain electrode layers, a buffer layer, and a semiconductor layer are formed.
Abstract:
Provided are a method of heating a composition which is applicable to a substrate provided with a material having low heat resistance and a method of forming a glass pattern which leads to reduction of cracks. A composition formed over a substrate is irradiated with a laser beam to bake the paste through local heating. Scan with the laser beam is, performed so that there can be no difference in the laser beam irradiation period between the middle portion and the perimeter portion of the composition. Specifically, irradiation with the laser beam is performed so that the width of the beam spot overlapping with the composition in the scanning direction is substantially uniform.