Abstract:
In a system for cleaning a workpiece or wafer, a boundary layer of heated liquid is formed on the workpiece surface. Ozone is provided around the workpiece. The ozone diffuses through the boundary layer and chemically reacts with contaminants on the workpiece surface. A jet of high velocity heated liquid is directed against the workpiece, to physically dislodge or remove a contaminant from the workpiece. The jet penetrates through the boundary layer at the point of impact. The boundary layer otherwise remains largely undisturbed. Preferably, the liquid includes water, and may also include a chemical. Steam may also be jetted onto the workpiece, with the steam also physically removing contaminants, and also heating the workpiece to speed up chemical cleaning. The workpiece and the jet of liquid are moved relative to each other, so that substantially all areas of the workpiece surface facing the jet are exposed at least momentarily to the jet. Sonic or electromagnetic energy may also be introduced to the workpiece.
Abstract:
A system for processing a workpiece includes an inner chamber pivotably supported within an outer chamber. The inner chamber has an opening to allow liquid to drain out. A motor pivots the inner chamber to bring the opening at or below the level of liquid in the inner chamber. As the inner chamber turns, liquid drains out. Workpieces within the inner chamber are supported on a holder or a rotor, which may be fixed or rotating. Multi processes may be performed within the inner chamber, reducing the need to move the workpieces between various apparatus and reducing risk of contamination.
Abstract:
An apparatus for processing a semi-conductor wafer or similar workpiece has one or more liquid outlets for applying a heated process liquid to the wafer within a process chamber. Ozone gas is provided into the chamber directly, or via the processed liquid. Sonic energy is introduced to the workpiece through a layer of liquid. In an alternative design, the wafers are immersed in heated process liquid, and an ozone atmosphere is provided above the liquid. The wafers are then lifted out of the liquid, or the liquid is alternatively drained off. The ozone gas/liquid interface passes down across the surfaces of the wafers.
Abstract:
Workpieces requiring low levels of contamination, such as semiconductor wafers, are loaded into a rotor within a process chamber. The process chamber has a horizontal drain opening in its cylindrical wall. The chamber is closed via a door. A process or rinsing liquid is introduced into the chamber. The liquid rises to a level so that the workpieces are immersed in the liquid. The chamber slowly pivots or rotates to move the drain opening down to the level of the liquid. The liquid drains out through the drain opening. The drain opening is kept near the surface of the liquid to drain off liquid at a uniform rate. An organic solvent vapor is introduced above the liquid to help prevent droplets of liquid from remaining on the workpieces as the liquid drains off. The rotor spins the workpieces to help to remove any remaining droplets by centrifugal force.
Abstract:
A system for processing a workpiece includes an inner chamber pivotably supported within an outer chamber. The inner chamber has an opening to allow liquid to drain out. A motor pivots the inner chamber to bring the opening at or below the level of liquid in the inner chamber. As the inner chamber turns, liquid drains out. Workpieces within the inner chamber are supported on a holder or a rotor, which may be fixed or rotating. Multi processes may be performed within the inner chamber, reducing the need to move the workpieces between various apparatus and reducing risk of contamination.