Abstract:
A vacuum insulated glass unit (VIGU) comprises a first pane of a transparent material and a second pane of a transparent material. The second pane is spaced apart from the first pane to define a cavity therebetween. At least one of a spacer and an array of stand-off members is disposed between the first and second panes to maintain separation therebetween. A first adhesive layer forms at least a portion of a gas-tight connection between the first pane and the second pane. A highly hermetic coating is disposed over the adhesive layer, where the coating is an inorganic layer.
Abstract:
A micromechanical device having a deflectable member which contacts a stationary member. An antireflective coating is applied to portions of the micromechanical device to limit undesired reflection from the device. A passivation or lubrication layer is applied to the device to reduce stiction between the deflectable member and the stationary member. An insulator layer is utilized between the antireflective coating and the lubrication layer to prevent photoelectric-induced breakdown of the lubrication layer.
Abstract:
Technologies are generally described for a method and system configured effective to detect a defect in a sample including graphene. An example method may include receiving a sample, where the sample may include at least some graphene and at least some defects in the graphene. The method may further include exposing the sample to a gas under sufficient reaction conditions to produce a marked sample, where the marked sample may include marks bonded to at least some of the defects. The method may further include placing the marked sample in a detector system. The method may also include detecting at least some of the marks with the detector system.
Abstract:
Technologies are generally described for a membrane that may incorporate a graphene layer perforated by a plurality of nanoscale pores. The membrane may also include a gas sorbent that may be configured to contact a surface of the graphene layer. The gas sorbent may be configured to direct at least one gas adsorbed at the gas sorbent into the nanoscale pores. The nanoscale pores may have a diameter that selectively facilitates passage of a first gas compared to a second gas to separate the first gas from a fluid mixture of the two gases. The gas sorbent may increase the surface concentration of the first gas at the graphene layer. Such membranes may exhibit improved properties compared to conventional graphene and polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.
Abstract:
The disclosure relates to hydrophobic coatings for oxidized surfaces and methods of producing the same. Such coatings may be produced by applying a compound of the general formula AXn or A(R1)mXn to an oxidized surface followed by a nucleophilic compound of the general formula DR2. The processes may result in a hydrophobic unreactive organic coating that sterically inhibits access to the underlying oxidized surface or reactive groups. In selected embodiments, the hydrophobic coating may form a monolayer.
Abstract:
A latching mechanism selectively maintains a first member and a second member in secured engagement by the interposition of a striker plate, mounted upon the second member, between spaced apart arms carried by a latching cam mounted on the first member for pivotal movement and locked in a latching position against such movement by a locking member, and moves the first member away from the second member upon selective release of the secured engagement by the actuation of a push-button assembly which unlocks the locking member and allows the latching cam to be moved out of the latching position by a biasing spring so that one of the spaced apart arms pushes against the strike plate to move the first member away from the second member. Selective movement of the first member toward the second member engages the one of the spaced apart arms with the strike plate and moves the latching cam against the biasing force of the biasing spring until the locking member locks the latching cam in the latched position, with the strike plate interposed between the spaced apart arms of the latching cam. In the event of a jam, an auxiliary latch retains the locking member in an unlocked position independent of the push-button assembly.
Abstract:
Technologies are generally described for perforated graphene monolayers and membranes containing perforated graphene monolayers. An example membrane may include a graphene monolayer having a plurality of discrete pores that may be chemically perforated into the graphene monolayer. The discrete pores may be of substantially uniform pore size. The pore size may be characterized by one or more carbon vacancy defects in the graphene monolayer. The graphene monolayer may have substantially uniform pore sizes throughout. In some examples, the membrane may include a permeable substrate that contacts the graphene monolayer and which may support the graphene monolayer. Such perforated graphene monolayers, and membranes comprising such perforated graphene monolayers may exhibit improved properties compared to conventional polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.
Abstract:
Technologies are generally described for a membrane that may incorporate a graphene layer perforated by a plurality of nanoscale pores. The membrane may also include a gas sorbent that may be configured to contact a surface of the graphene layer. The gas sorbent may be configured to direct at least one gas adsorbed at the gas sorbent into the nanoscale pores. The nanoscale pores may have a diameter that selectively facilitates passage of a first gas compared to a second gas to separate the first gas from a fluid mixture of the two gases. The gas sorbent may increase the surface concentration of the first gas at the graphene layer. Such membranes may exhibit improved properties compared to conventional graphene and polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.