Abstract:
A high power flip chip LED has an n-doped semiconductor layer formed on the sapphire substrate, with a plurality of first regions and a second region of intersecting lines for separating the first regions from each other. P-doped semiconductor layers are on the first regions of the n-doped semiconductor layer to form mesa structures. At least one pair of diagonal corners of the respective mesa structures are rounded inward to form first basins between adjacent inward-rounded corners. First metal layers are on the mesa structures in a same configuration. A second metal layer is on the second region of the n-doped semiconductor layer. First ohmic contacts are on the first metal layers. Second ohmic contacts are on the second metal layer in the first basins. The LED can prevent the current channeling to increase the luminous area while equalizing the current density area thereby generating high brightness light.
Abstract:
Disclosed are a white light emitting diode and a method for manufacturing the white light emitting diode. The white light emitting diode comprises a conductive substrate with a light transmitting property having a surface divided into first and second areas; a first emitting unit including a first clad layer, a first active area, and a second clad layer at the first area of the conductive substrate; a second emitting unit including a third clad layer, a second active area emitting light with a wavelength to be combined with light emitted from the first active area into white light, and a fourth clad layer at the second area of the conductive substrate; and first, second and third electrodes, the first electrode connected to the second surface of the conductive substrate, the second electrode connected to the second clad layer, and the third electrode connected to the fourth clad layer.
Abstract:
In a nitride semiconductor LED having a light emitting structure, an n-doped semiconductor layer has a first region and a second region surrounding the first region, an active layer is formed on the second region of the n-doped semiconductor layer, and a p-doped nitride semiconductor layer is formed on the active layer. A p-electrode is formed on the p-doped semiconductor layer. An n-electrode is formed on the first region of the n-doped nitride semiconductor layer.
Abstract:
Disclosed are a vertical GaN light emitting diode and a method for manufacturing the same. The vertical GaN light emitting diode comprises a first conductive GaN clad layer with an upper surface provided with a first contact formed thereon, an active layer formed on a lower surface of the first conductive GaN clad layer, a second conductive GaN clad layer formed on a lower surface of the active layer, a conductive adhesive layer formed on the second conductive GaN clad layer, and a conductive substrate, with a lower surface provided with a second contact formed thereon, formed on a lower surface of the conductive adhesive layer. The method for manufacturing the vertical GaN light emitting diodes comprises the step of removing the sapphire substrate from the light emitting structure so as to prevent the damages on a GaN single crystal plane of the structure.
Abstract:
An apparatus for controlling vehicle stability includes a pressure calculator calculating a brake pressure. In one embodiment, the calculated brake pressure is calculated based on a yaw rate signal input from a yaw rate sensor. In other embodiments, the calculated brake pressure is further calculated on the basis of signals input from a steering angle sensor, a lateral acceleration sensor, a vehicle speeds sensor, and a master brake pressure sensor. A method for controlling vehicle stability is also provided. The method and apparatus enhances stability and reliability during vehicle driving.
Abstract:
Disclosed are a vertical GaN light emitting diode and a method for manufacturing the same. The vertical GaN light emitting diode comprises a first conductive GaN clad layer with an upper surface provided with a first contact formed thereon, an active layer formed on a lower surface of the first conductive GaN clad layer, a second conductive GaN clad layer formed on a lower surface of the active layer, a conductive adhesive layer formed on the second conductive GaN clad layer, and a conductive substrate, with a lower surface provided with a second contact formed thereon, formed on a lower surface of the conductive adhesive layer. The method for manufacturing the vertical GaN light emitting diodes comprises the step of removing the sapphire substrate from the light emitting structure so as to prevent the damages on a GaN single crystal plane of the structure.
Abstract:
An apparatus for controlling vehicle stability includes a virtual pressure calculator calculating a virtual brake pressure. In one embodiment, the virtual brake pressure is calculated based on a yaw rate signal input from a yaw rate sensor. In other embodiments, the virtual brake pressure is further calculated on the basis of signals input from a steering angle sensor, a lateral acceleration sensor, a vehicle speeds sensor, and a master brake pressure sensor. A method for controlling vehicle stability is also provided. The method and apparatus enhances stability and reliability during vehicle driving.
Abstract:
A method for manufacturing a gallium nitride (GaN)-based single crystalline substrate includes the steps of (a) forming a GaN-based single crystalline bulk on an upper surface of a growth substrate; (b) forming grooves through the growth substrate so that the growth substrate is patterned and divided into several units by the grooves, each of the grooves having a designated width; and (c) separating the GaN-based single crystalline bulk from the growth substrate by irradiating a laser beam on a lower surface of the growth substrate.
Abstract:
A method for manufacturing vertical GaN light emitting diodes starts by forming a light emitting structure on a sapphire substrate, said light emitting structure including a first conductive GaN clad layer, an active layer and a second conductive GaN clad layer. The light emitting structure is divided into plural units so that the first conductive GaN clad layer of a thickness of at least approximately 100 Å remains. A conductive substrate is attached to the divided upper surface of the light emitting structures using a conductive adhesive layer. A lower surface of the sapphire substrate is irradiated by laser beam so that the sapphire substrate is removed from the unit light emitting structures. First and second contacts are formed respectively on the surfaces of the first conductive clad layer and the conductive substrate. Finally, the resulting structure is cut into plural unit light emitting diodes.