摘要:
Disclosed are a white light emitting diode and a method for manufacturing the white light emitting diode. The white light emitting diode comprises a conductive substrate with a light transmitting property having a surface divided into first and second areas; a first emitting unit including a first clad layer, a first active area, and a second clad layer at the first area of the conductive substrate; a second emitting unit including a third clad layer, a second active area emitting light with a wavelength to be combined with light emitted from the first active area into white light, and a fourth clad layer at the second area of the conductive substrate; and first, second and third electrodes, the first electrode connected to the second surface of the conductive substrate, the second electrode connected to the second clad layer, and the third electrode connected to the fourth clad layer.
摘要:
Disclosed are a white light emitting diode and a method for manufacturing the white light emitting diode. The white light emitting diode comprises a conductive substrate with a light transmitting property having a surface divided into first and second areas; a first emitting unit including a first clad layer, a first active area, and a second clad layer at the first area of the conductive substrate; a second emitting unit including a third clad layer, a second active area emitting light with a wavelength to be combined with light emitted from the first active area into white light, and a fourth clad layer at the second area of the conductive substrate; and first, second and third electrodes, the first electrode connected to the second surface of the conductive substrate, the second electrode connected to the second clad layer, and the third electrode connected to the fourth clad layer.
摘要:
A method for manufacturing vertical GaN light emitting diodes starts by forming a light emitting structure on a sapphire substrate, said light emitting structure including a first conductive GaN clad layer, an active layer and a second conductive GaN clad layer. The light emitting structure is divided into plural units so that the first conductive GaN clad layer of a thickness of at least approximately 100 Å remains. A conductive substrate is attached to the divided upper surface of the light emitting structures using a conductive adhesive layer. A lower surface of the sapphire substrate is irradiated by laser beam so that the sapphire substrate is removed from the unit light emitting structures. First and second contacts are formed respectively on the surfaces of the first conductive clad layer and the conductive substrate. Finally, the resulting structure is cut into plural unit light emitting diodes.
摘要:
Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.
摘要:
Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.
摘要:
A flip chip-type nitride semiconductor light emitting diode includes a light transmittance substrate, an n-type nitride semiconductor layer, an active layer, a p-type nitride semiconductor layer and a mesh-type DBR reflecting layer. The mesh-type DBR reflecting layer has a plurality of open regions. The mesh-type DBR reflecting layer is composed of first and second nitride layers having different Al content. The first and second nitride layers are alternately stacked several times to form the mesh-type DBR reflecting layer. An ohmic contact layer is formed on the mesh-type DBR reflecting layer and on the p-type nitride semiconductor layer.
摘要:
A semiconductor laser diode capable of achieving an improvement in kink level and an improvement in catastrophic optical damage (COD) level. The semiconductor laser diode includes a first-conductivity type semiconductor substrate, a first-conductivity type clad layer formed over the substrate, an active layer formed over the first-conductivity type clad layer, a second-conductivity type clad layer formed over the active layer, and provided with a ridge, and a light confining layer formed on the second-conductivity type clad layer, and made of a first-conductivity type semiconductor material, the light confining layer including higher-order mode absorption layers having an energy band gap lower than optical energy produced in the active layer, and refractive index control layers having a refractive index lower than that of the higher-order mode absorption layers. The higher-order mode absorption layers and refractive index control layers are laminated in an alternate manner.
摘要:
A magnetoresistive (MR) element assembly with a longitudinal bias comprising a MR element, a bias coil, and spaced conductor leads is disclosed. The MR element is formed into an elongated ellipse-like shape with an elongated sense region and two end regions separated by a small nonmagnetic gap thereby reducing the longitudinal demagnetization field within the MR element. An easy axis of magnetization is formed by the MR element and oriented in a direction parallel to the main axis of the element. A bias coil is disposed about the MR element to produce a longitudinal bias field sufficient to maintain the elongated sense region in a single domain state. The elongated ellipse-like shaped MR element features a uniformly reduced demagnetization field for inhibiting the formation of a multi-domain state within the elongated sense region. The MR element assembly thus improves sensitivity of the MR head and suppresses Barkhausen noise in the output of the head.