摘要:
Methods of increasing the total lipid content in a eukaryotic cell, the total content of polyunsaturated fatty acids [“PUFAs”], and/or the ratio of desaturated fatty acids to saturated fatty acids by reducing the activity of the heterotrimeric SNF1 protein kinase are disclosed. Preferably, the chromosomal genes encoding the Snf1 α-subunit, Gal83 β-subunit or Snf4 γ-subunit of the SNF1 protein kinase, the upstream regulatory genes encoding Sak1, Hxk2, Glk1 or Reg1, or the downstream genes encoding Rme1, Cbr1 or Snf3 are manipulated in a PUFA-producing strain of the oleaginous yeast Yarrowia lipolytica, resulting in increased total lipid content, as compared to the parent strain comprising the heterotrimeric SNF1 protein kinase not having reduced activity.
摘要:
Methods of increasing the total lipid content in a eukaryotic cell, the total content of polyunsaturated fatty acids [“PUFAs”], and/or the ratio of desaturated fatty acids to saturated fatty acids by reducing the activity of the heterotrimeric SNF1 protein kinase are disclosed. Preferably, the chromosomal genes encoding the Snf1 α-subunit, Gal83 β-subunit or Snf4 γ-subunit of the SNF1 protein kinase, the upstream regulatory genes encoding Sak1, Hxk2, Glk1 or Reg1, or the downstream genes encoding Rme1, Cbr1 or Snf3 are manipulated in a PUFA-producing strain of the oleaginous yeast Yarrowia lipolytica, resulting in increased total lipid content, as compared to the parent strain comprising the heterotrimeric SNF1 protein kinase not having reduced activity.
摘要:
Disclosed herein are transformed Yarrowia lipolytica comprising an exogenous polynucleotide encoding a polypeptide having sucrose invertase activity. Also disclosed are methods of using the transformed Y. lipolytica.
摘要:
Disclosed herein are transformed Yarrowia lipolytica comprising an exogenous polynucleotide encoding a polypeptide having sucrose invertase activity. Also disclosed are methods of using the transformed Y. lipolytica.
摘要:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
摘要:
The present invention relates to a Δ9 desaturase, which has the ability to convert palmitic acid [16:0] or stearic acid [18:0] into palmitoleic acid [16:1] or oleic acid [18:1], respectively. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ9 desaturase along with a method of making long chain polyunsaturated fatty acids (PUFAs) using this Δ9 desaturase in oleaginous yeast is disclosed.
摘要:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
摘要:
Genes have been identified in the Methylomonas genome that are responsive to various metabolic and growth conditions. The identified responsiveness of these genes allows for the use of their promoters in regulated gene expression in C1 metabolizing bacteria. In particular, the hps promoter, which in its native state drives the expression of 3-hexulose-6-phosphate synthase (HPS), was found to be useful for directing expression of heterolgous coding regions (e.g., crtZ) in the obligate methanotroph Methylomonas sp. 16a.
摘要:
Genes have been identified in the Methylomonas genome that are responsive to various metabolic and growth conditions. The identified responsiveness of these genes allows for the use of their promoters in regulated gene expression in C1 metabolizing bacteria. In particular, the hps promoter, which in its native state drives the expression of 3-hexulose-6-phosphate synthase (HPS), was found to be useful for directing expression of heterolgous coding regions (e.g., crtZ) in the obligate methanotroph Methylomonas sp. 16a.