摘要:
The integrated unmanned, affordable, microsystem in accordance with the present invention is used to deploy physical or chemical sensors for continuous monitoring of sea space over large time periods. The microsystem is capable of measuring ocean physical parameters over large time spans weeks, with higher accuracies and resolution and at significantly lower costs that the other sensors currently known in the art.
摘要:
The integrated unmanned, affordable, microsystem in accordance with the present invention is used to deploy physical or chemical sensors for continuous monitoring of sea space over large time periods. The microsystem is capable of measuring ocean physical parameters over large time spans weeks, with higher accuracies and resolution and at significantly lower costs that the other sensors currently known in the art.
摘要:
The present invention provides a method for the synthesis of nanowires in a silicon nanoporous template by electrodeposition and a novel technique for the integration of nanowires to transduction surfaces. In accordance with the present invention, a method for the fabrication of nanowire interconnects is provided. The method includes the steps of fabricating substantially vertical nanowires in a selectively passivated nanoporous silicon template, backetching the silicon template to expose the nanowires, eutectically bonding the exposed nanowires to a receiving silicon wafer, and etching the silicon template to produce substantially freestanding nanowire interconnects in contact with the receiving silicon wafer.
摘要:
Continuous monitoring of acetone is a challenge using related art sensing methods. Though real-time detection of acetone from different biofluids is promising, signal interference from other biomarkers remains an issue. A minor fluctuation of the signals in the micro-ampere range can cause substantial overlapping in linear/polynomial calibration fittings. To address the above in non-invasive detection, principal component analysis (PCA) can be used to generate specific patterns for different concentration points of acetone in the subspace. This results in improvement of the problem of overlapping of the signals between two different concentration points of the data sets while eliminating dimensionality and redundancy of data variables. An algorithm following PCA can be incorporated in a microcontroller of a sensor, resulting in a functional wearable acetone sensor. Acetone in the physiological range (0.5 ppm to 4 ppm) can be detected with such a sensor.
摘要:
In one embodiment, a mask set for use in fabricating thin film tunneling devices includes a first photomask configured to form bottom electrodes of the devices, the first photomask comprising a first alignment mark including multiple corner markers, and a second photomask configured to form a continuous top layer of the devices, the second photomask comprising a second alignment mark including a corner marker configured to be aligned with one of the corner markers of the first photomask, wherein a degree of overlap between the bottom electrodes and the continuous top layer depends upon the corner marker of the first photomask with which the corner marker of the second photomask aligns.
摘要:
In one embodiment, an electrical circuit formed on a substrate includes a first multi-layer stack and a second multi-layer stack that share a top layer that comprises a continuous piece of conductive material.
摘要:
A system for performing non-invasive networked medical procedures including a number of in vivo medical devices, a communication path between at least two of the devices, an ex vivo control unit to control the behavior of the devices, and a wireless communication path between the control unit and at least one of the devices. An associated method for performing non-invasive networked medical procedures is also provided.
摘要:
The present invention illustrates a bulk silicon etching technique that yields straight sidewalls, through wafer structures in very short times using standard silicon wet etching techniques. The method of the present invention employs selective porous silicon formation and dissolution to create high aspect ratio structures with straight sidewalls for through wafer MEMS processing.
摘要:
A MEMS-based silicon pressure sensor for the ocean environment is presented. The invention is a multiple diaphragm piezoresistive pressure sensor for measuring the pressure of a liquid, comprising an inner deformable diaphragm formed on a silicon substrate, the inner deformable diaphragm having a first thickness an outer deformable diaphragm formed on the silicon substrate, the outer deformable diaphragm having a second thickness which is greater than the first thickness, positioned below the inner deformable diaphragm to support the inner deformable diaphragm, a first piezoresistive bridge embedded in the inner deformable diaphragm, a second piezoresistive bridge embedded in the outer deformable diaphragm and possibly a third piezoresistive bridge embedded in the silicon substrate to compensate for temperature variations.
摘要:
The subject invention provides sensor systems that can detect biomarkers related to wound healing (e.g., uric acid, adenosine, arginine and/or xanthine). In one embodiment, the subject invention pertains to materials and methods for monitoring biomarkers non-invasively in a wound and a biofluid (e.g., sweat) in the proximity of the wound, optionally, including other physiological fluids. Skin based, non-invasive enzymatic electrochemical biosensor on a wearable platform (e.g., sweat patch) that can evaluate the healing of wounds through assessment of its biomarker levels are provided. This non-invasive detection from physiologically biofluids can reduce or eliminate occlusion effects.