Abstract:
The present invention relates to a process for preparing a resin composition comprising benzoxazine, a prepreg and a laminate prepared therefrom. Said resin composition comprising benzoxazine is prepared by adding an acidic filler into the resin composition comprising benzoxazine, wherein said resin composition comprising benzoxazine comprises a benzoxazine resin, an epoxy resin A1 having an epoxy equivalent of 150-450, and an epoxy resin A2 having an epoxy equivalent of 451-1000. By adding an acidic filler into the resin composition, the present invention promotes the polymerization of benzoxazine and epoxy resins, and decreases the curing temperature needed for the polymerization of benzoxazine and epoxy resins. The laminates prepared from the resin composition added with an acidic filler have a high anti-stripping stability, a high glass transition temperature, a low water absorption, a high heat resistance, a high bending strength and a better processability, and achieves a low coefficient of thermal expansion.
Abstract:
The present application provides a resin component, and a prepreg and a circuit material using the same. The resin component comprises unsaturated polyphenylene ether resin, polyolefin resin, terpene resin and an initiator. When the total weight of the unsaturated polyphenylene ether resin, polyolefin resin and terpene resin is defined as 100 parts by weight, the terpene resin is in an amount of 3-40 parts by weight. The polyolefin resin is one or a combination of at least two selected from the group consisting of unsaturated polybutadiene resin, SBS resin and styrene butadiene resin. The present application discloses that the resulting resin composition has good film-forming properties, adhesion and dielectric properties through the coordination of unsaturated polyphenylene ether resin, unsaturated polyphenylene ether resin, polyolefin resin and terpene resin, and the circuit boards using the same have higher interlayer peel strength and lower dielectric loss.
Abstract:
The present invention relates to a halogen-free epoxy resin composition, a prepreg, a laminate and a printed circuit board containing the same. The halogen-free epoxy resin composition comprises an epoxy resin and a curing agent. Taking the total equivalent amount of the epoxy groups in the epoxy resin as 1, the active groups in the curing agent which react with the epoxy groups have an equivalent amount of 0.5-0.95. By controlling the equivalent ratio of the epoxy groups in the epoxy resin to the active groups in the curing agent to be 0.5-0.95, the present invention ensures the Df value stability of prepregs under different curing temperature conditions while maintaining a low dielectric constant and a low dielectric loss. The prepregs and laminates prepared from the resin composition have comprehensive performances, such as low dielectric constant, low dielectric loss, excellent flame retardancy, heat resistance, cohesiveness, low water absorption and moisture resistance, and are suitable for use in halogen-free multilayer circuit boards.
Abstract:
The present application provides a circuit material and a circuit board containing the same. The circuit material comprises a conductive metal layer and a dielectric substrate layer, and an adhesive layer arranged therebetween, wherein the adhesive layer is made of a material which comprises an adhesive composition comprising a resin component and a non-resin component, wherein the resin component is composed of unsaturated polyphenylene ether resin, SBS resin and maleimide resin; and the non-resin component comprises an initiator; and the adhesive layer is obtained by applying the adhesive composition dissolved in a solvent onto the surface of the conductive metal layer or the dielectric substrate layer in the form of a solution, or by applying to a release material and removing the release material after partially curing or completely curing.
Abstract:
The present invention provides a process for preparing a pre-treated low Dk-type glass fabric for constituting a circuit board, comprising pre-treating low Dk-type glass fabric with a pre-treating varnish having a Dk close to the Dk of the used low Dk-type glass fabric at different temperatures and having a small Df. The present invention further provides a bonding sheet and a circuit board prepared thereby. The circuit boards prepared by the preparation process of the present invention have a Dk having small differences in warp and weft directions, and can effectively solve the problem of signal propagation delay. The circuit boards have a small Df, so as to have a small signal loss. Meanwhile, the cured, partially-cured or uncured dry glue obtained after drying the solvent of the pre-treating varnish has similar dielectric properties at different temperatures to the used low Dk-type glass fabric, so that the circuit boards have a very small signal propagation delay at different temperatures.
Abstract:
The present invention provides a degradable and recyclable epoxy conductive adhesive, which comprises the following raw materials in percentage by weight: 15% to 30% of epoxy resin, 1% to 10% of a curing agent, 0.1% to 2% of a reaction diluent and 15% to 85% of a conductive filler, wherein the curing agent comprises a breakable molecular structure. According to the epoxy conductive adhesive of the present invention, after the epoxy resin in the conductive adhesive is cured by using the recyclable and degradable epoxy resin curing agent of a specific molecular structure, the conductive adhesive can be degraded in normal pressure, mild and specific conditions, the process is simple and the operation is convenient, no contamination is brought to the environment, the recycling cost is largely reduced, and the recycling of the conductive adhesive has enormous economic and environmental advantages. By using the recyclable and degradable epoxy resin curing agent of a specific molecular structure, the shear strength of the conductive adhesive is greatly increased, and the reliability and the service life of the conductive adhesive are largely improved.
Abstract:
Provided are a thermosetting resin composition and a prepreg, laminate and printed circuit board using same. The thermosetting resin composition comprises a resin component, the resin component comprising a modified cyclic olefin copolymer having a structure as shown in formula I and another unsaturated resin. By introducing a methacrylate end group having a certain polarity into a cyclic olefin copolymer, a modified cyclic olefin copolymer is formed. The modified cyclic olefin copolymer can form a thermosetting material by means of cross-linking with itself or another unsaturated resin, whereby the bonding property can be significantly improved while retaining the excellent dielectric properties of the cyclic olefin copolymer itself. The laminate prepared using the thermosetting resin composition has good dielectric properties, a good peel strength and a good heat resistance, and can meet all the performance requirements for printed circuit board substrates in the current high-frequency and high-speed communication field.
Abstract:
The present invention relates to a halogen-free epoxy resin composition, a prepreg and a laminate containing the same. The halogen-free epoxy resin composition comprises 60 parts by weight of epoxy resin, from 15 to 28 parts by weight of benzoxazine resin, and from 10 to 20 parts by weight of styrene-maleic anhydride. The present invention discloses using from 15 to 28 parts by weight of benzoxazine resin and from 10 to 20 parts by weight of styrene-maleic anhydride to cure 60 parts by weight of epoxy resin, to ensure the Df stability of prepregs at different curing temperature conditions while maintaining low dielectric constant and low dielectric loss. The prepregs and laminates prepared from the resin composition have comprehensive performances, such as low dielectric constant, low dielectric loss, excellent flame retardancy, heat resistance, cohesiveness, low water absorption and moisture resistance, and are suitable for use in halogen-free multilayer circuit boards.
Abstract:
Provided in the present invention are an epoxy resin composition, prepreg and laminate using the same, the epoxy resin composition comprising the following components: (A) an imide modified epoxy resin; and (B) a crosslinking agent, the imide modified epoxy resin being an epoxy resin having a structure of formula (1) and/or formula (2). The prepreg and laminate prepared from the epoxy resin composition have a high glass-transition temperature, a low dielectric constant, a low dielectric loss factor, a high heat and humidity resistance, a high toughness and a good processability.
Abstract:
Provided are a thermosetting epoxy resin composition and a prepreg, laminated board and printed circuit board using the thermosetting epoxy resin composition. The thermosetting epoxy resin composition comprises the following components in parts by weight: 2-10 parts of a phosphorus-containing anhydride, 5-40 parts of a phosphorus-free anhydride, 5-45 parts of an epoxy resin, 40-70 parts of a filler, and 0-15 parts of a phosphorus-containing flame retardant, with the total part by weight of all these components being 100 parts, wherein the phosphorus-containing anhydride has a structure as represented by formula I or II, and the epoxy resin is selected from one of or a combination of at least two of a bisphenol A epoxy resin, a bisphenol F epoxy resin and a biphenyl epoxy resin. The thermosetting epoxy resin composition also has good heat resistance, discoloration resistance and dimensional stability after curing while ensuring V-0 grade flame resistance, and can be used for the preparation of printed circuit board substrates in the field of LEDs.