摘要:
A method of measuring the temperature in a high pressure furnace of a hot isostatic pressing apparatus, wherein a closed-end pipe having its inside communicated with the inside of the high pressure furnace and enabling a pressure medium to pass therethrough is disposed in the furnace, an incident top end of an optical fiber, a bundle of optical fibers or like other equivalent optical rod-like memeber is disposed to the open end of the closed-end pipe so as to be capable of receiving thermally radiated light from the inside of the closed-ended pipe and an exit rear end thereof is led out through a cover and to the outside of said high pressure vessel and a measuring system is connected to said exit rear end to detect heat radiation power from the top end of the closed-end pipe to thereby measure the temperature inside of the furnace.
摘要:
A method of measuring the temperature in a high pressure furnace of a hot isostatic pressing apparatus, wherein a closed-end pipe having its inside communicated with the inside of the high pressure furnace and enabling a pressure medium to pass therethrough is disposed in the furnace, an incident top end of an optical fiber, a bundle of optical fibers or like other equivalent optical rod-like memeber is disposed to the open end of the closed-end pipe so as to be capable of receiving thermally radiated light from the inside of the closed-ended pipe and an exit rear end thereof is led out through a cover and to the outside of said high pressure vessel and a measuring system is connected to said exit rear end to detect heat radiation power from the top end of the closed-end pipe to thereby measure the temperature inside of the furnace.
摘要:
A temperature detector for use in a high temperature and high pressure furnace, including thermocouple wires received in a tubular protective sheath for protection against the furnace atmosphere, and characterized by the provision of a pair of rod members of a large diameter serving as a thermocouple pair for the positive and negative sides thereof, a protective sheath having a rod suspending holder portion in an upper portion thereof for supporting the thermocouple rod members therein in a vertically suspended state and arranged to hold the rod members out of contact with each other except at a temperature measuring point and to contact the rod members with the protective sheath only in a region other than a high temperature region of the furnace.
摘要:
The temperature measuring apparatus according to the present invention is of the high melting point metal carbide—carbon system material thermocouple type. According to this temperature measuring apparatus, it is possible to measure temperatures from a room temperature range to a high temperature range in excess of 2000° C. continuously, stably and with good accuracy. A constitution is preferable wherein a rod-like member formed of high melting point metal carbide is inserted into a pipe-like member with a bottom formed of carbon system material, and connected at the bottom to serve as a temperature measuring portion.
摘要:
A hot isostatic pressing method is disclosed wherein workpieces are accommodated within a high pressure vessel and the interior of the high pressure vessel is filled with an inert gas of a high temperature and a high pressure to treat the workpieces. The method includes a cooling step which is performed after maintaining the interior of the high pressure vessel at a high temperature and a high pressure for a predetermined time and in which a liquid inert gas is fed into the high pressure vessel. According to this method it is possible to shorten the cycle time of an HIP apparatus.
摘要:
A hot isostatic pressing apparatus (HIP apparatus) comprises a vertically cylindrical high-pressure vessel comprising a high-pressure cylinder 1 and upper and lower lids 2 and 3; a bottomed cylindrical casing 6 capable of housing workpieces 9 and a resistance-wire heater 11, a heat insulating structure 16 equipped with a gas flow regulating valve 15 and formed in a bottomed cylindrical shape on the outside of the casing 6 so as to cover the casing 6, and a heat sink 17 having a water cooling mechanism provided in the space defined by the heat insulating structure 16 and the inner surface of the high-pressure cylinder 1, which are provided within the high-pressure vessel; and a pressure medium gas stirring fan 12 for promoting the temperature uniformity of the space of the treatment chamber 7 for housing the workpieces 9, the stirring fan being arranged on the lower lid 3 side within the casing 6, whereby the cooling to a temperature range of 100° C. or lower which allows a quenching treatment and the safe manual handling of workpieces can be efficiently performed.
摘要:
A treatment chamber for heating and pressing workpieces and a heat insulating structure which covers the treatment chamber sideways and from above are provided within a high-pressure vessel. Below the treatment chamber are disposed a base heater for heating a pressure medium gas and a fan for supplying the pressure medium gas in a heated state into the treatment chamber and stirring the heated gas. The workpieces can be held on the heat insulating structure side, and the heat insulating structure and the workpieces can be taken out from the interior of the high-pressure vessel and can be conveyed together separately from a lower lid of the high-pressure vessel. A hot isostatic pressing apparatus is provided less expensively which can heat and press workpieces at a relatively low temperature of not higher than 600° C. Besides, it is possible to shorten the cycle time in HIP.
摘要:
While a workpiece is heated and pressed by one of a pair of high-pressure vessels, a workpiece being pressed by the other high-pressure vessel is placed in a heated state. In the reducing process after termination of heating and pressing treatment of the workpiece by one high-pressure vessel, both the high-pressure vessels are placed in communication, and the pressure medium gas released from one high-pressure vessel is poured into the other high-pressure vessel. After pressures of both the high-pressure vessels have assumed a nearly balanced state, the pressure medium gas is sucked out of one high-pressure vessel by a compressor and pressed, and is poured into the other high-pressure vessel, and the workpiece is heated and pressed by the other high-pressure vessel. By the method as described, considerable shortening of cycle time of HIP treatment is achieved, and the HIP treatment can be carried out with high efficiency.
摘要:
A hot isostatic pressing method is disclosed wherein workpieces are accommodated within a high pressure vessel and the interior of the high pressure vessel is filled with an inert gas of a high temperature and a high pressure to treat the workpieces. The method includes a cooling step which is performed after maintaining the interior of the high pressure vessel at a high temperature and a high pressure for a predetermined time and in which a liquid inert gas is fed into the high pressure vessel. According to this method it is possible to shorten the cycle time of an HIP apparatus.
摘要:
The specification describes a method for producing high density sintered silicon nitride (Si.sub.3 N.sub.4) having a relative density of at least 98%. In a first step, silicon nitride powder is compacted into a desired shape. It is then pre-sintered in a second step, generally, under normal pressure to obtain a presintered body having a relative density of at least 92%. In a third step, the presintered body is subjected to a hot isostatic pressing (HIP) in an inert gas atmosphere of 1500.degree.-2100.degree. C. and of nitrogen gas partial pressure of at least 500 atm. Since the presintering does not require any capsule, it is possible to produce high density sintered Si.sub.3 N.sub.4 of complex configurations. As a sintering aid, Y.sub.2 O.sub.3 --Al.sub.2 O.sub.3 --MgO system sintering aid is particularly effective. To improve the strength of sintered Si.sub.3 N.sub.4, it is effective to add a heat treatment step after the HIP and maintain the temperature of the sintered Si.sub.3 N.sub.4 above 500.degree. C. for a while. Between the second and third steps, the temperature of the presintered body is preferably maintained above 500.degree. C. These temperature controls are effective not only to improve the strength of sintered Si.sub.3 N.sub.4 but also to save the thermal energy and to shorten the production cycle.
摘要翻译:该说明书描述了一种生产相对密度至少为98%的高密度烧结氮化硅(Si3N4)的方法。 在第一步骤中,氮化硅粉末被压制成所需的形状。 通常在常压下在第二步骤中预烧结,得到相对密度至少为92%的预烧结体。 在第三步骤中,将预烧结体在1500-2100℃的惰性气体气氛和至少500atm的氮气分压下进行热等静压(HIP)。 由于预烧结不需要任何胶囊,因此可以生产复合结构的高密度烧结Si 3 N 4。 作为烧结助剂,Y2O3-Al2O3-MgO体系的烧结助剂特别有效。 为了提高烧结Si3N4的强度,在HIP之后添加热处理步骤并将烧结的Si 3 N 4的温度保持在500℃以上一段时间是有效的。 在第二和第三步骤之间,预烧结体的温度优选保持在500℃以上。这些温度控制不仅有效地提高了烧结Si 3 N 4的强度,而且有效地节约了热能并缩短了生产周期。