摘要:
A method of measuring the temperature in a high pressure furnace of a hot isostatic pressing apparatus, wherein a closed-end pipe having its inside communicated with the inside of the high pressure furnace and enabling a pressure medium to pass therethrough is disposed in the furnace, an incident top end of an optical fiber, a bundle of optical fibers or like other equivalent optical rod-like memeber is disposed to the open end of the closed-end pipe so as to be capable of receiving thermally radiated light from the inside of the closed-ended pipe and an exit rear end thereof is led out through a cover and to the outside of said high pressure vessel and a measuring system is connected to said exit rear end to detect heat radiation power from the top end of the closed-end pipe to thereby measure the temperature inside of the furnace.
摘要:
A method of measuring the temperature in a high pressure furnace of a hot isostatic pressing apparatus, wherein a closed-end pipe having its inside communicated with the inside of the high pressure furnace and enabling a pressure medium to pass therethrough is disposed in the furnace, an incident top end of an optical fiber, a bundle of optical fibers or like other equivalent optical rod-like memeber is disposed to the open end of the closed-end pipe so as to be capable of receiving thermally radiated light from the inside of the closed-ended pipe and an exit rear end thereof is led out through a cover and to the outside of said high pressure vessel and a measuring system is connected to said exit rear end to detect heat radiation power from the top end of the closed-end pipe to thereby measure the temperature inside of the furnace.
摘要:
A temperature detector for use in a high temperature and high pressure furnace, including thermocouple wires received in a tubular protective sheath for protection against the furnace atmosphere, and characterized by the provision of a pair of rod members of a large diameter serving as a thermocouple pair for the positive and negative sides thereof, a protective sheath having a rod suspending holder portion in an upper portion thereof for supporting the thermocouple rod members therein in a vertically suspended state and arranged to hold the rod members out of contact with each other except at a temperature measuring point and to contact the rod members with the protective sheath only in a region other than a high temperature region of the furnace.
摘要:
The temperature measuring apparatus according to the present invention is of the high melting point metal carbide—carbon system material thermocouple type. According to this temperature measuring apparatus, it is possible to measure temperatures from a room temperature range to a high temperature range in excess of 2000° C. continuously, stably and with good accuracy. A constitution is preferable wherein a rod-like member formed of high melting point metal carbide is inserted into a pipe-like member with a bottom formed of carbon system material, and connected at the bottom to serve as a temperature measuring portion.
摘要:
A treatment chamber for heating and pressing workpieces and a heat insulating structure which covers the treatment chamber sideways and from above are provided within a high-pressure vessel. Below the treatment chamber are disposed a base heater for heating a pressure medium gas and a fan for supplying the pressure medium gas in a heated state into the treatment chamber and stirring the heated gas. The workpieces can be held on the heat insulating structure side, and the heat insulating structure and the workpieces can be taken out from the interior of the high-pressure vessel and can be conveyed together separately from a lower lid of the high-pressure vessel. A hot isostatic pressing apparatus is provided less expensively which can heat and press workpieces at a relatively low temperature of not higher than 600° C. Besides, it is possible to shorten the cycle time in HIP.
摘要:
While a workpiece is heated and pressed by one of a pair of high-pressure vessels, a workpiece being pressed by the other high-pressure vessel is placed in a heated state. In the reducing process after termination of heating and pressing treatment of the workpiece by one high-pressure vessel, both the high-pressure vessels are placed in communication, and the pressure medium gas released from one high-pressure vessel is poured into the other high-pressure vessel. After pressures of both the high-pressure vessels have assumed a nearly balanced state, the pressure medium gas is sucked out of one high-pressure vessel by a compressor and pressed, and is poured into the other high-pressure vessel, and the workpiece is heated and pressed by the other high-pressure vessel. By the method as described, considerable shortening of cycle time of HIP treatment is achieved, and the HIP treatment can be carried out with high efficiency.
摘要:
A hot isostatic pressing method is disclosed wherein workpieces are accommodated within a high pressure vessel and the interior of the high pressure vessel is filled with an inert gas of a high temperature and a high pressure to treat the workpieces. The method includes a cooling step which is performed after maintaining the interior of the high pressure vessel at a high temperature and a high pressure for a predetermined time and in which a liquid inert gas is fed into the high pressure vessel. According to this method it is possible to shorten the cycle time of an HIP apparatus.
摘要:
A hot isostatic pressing apparatus (HIP apparatus) comprises a vertically cylindrical high-pressure vessel comprising a high-pressure cylinder 1 and upper and lower lids 2 and 3; a bottomed cylindrical casing 6 capable of housing workpieces 9 and a resistance-wire heater 11, a heat insulating structure 16 equipped with a gas flow regulating valve 15 and formed in a bottomed cylindrical shape on the outside of the casing 6 so as to cover the casing 6, and a heat sink 17 having a water cooling mechanism provided in the space defined by the heat insulating structure 16 and the inner surface of the high-pressure cylinder 1, which are provided within the high-pressure vessel; and a pressure medium gas stirring fan 12 for promoting the temperature uniformity of the space of the treatment chamber 7 for housing the workpieces 9, the stirring fan being arranged on the lower lid 3 side within the casing 6, whereby the cooling to a temperature range of 100° C. or lower which allows a quenching treatment and the safe manual handling of workpieces can be efficiently performed.
摘要:
A hot isostatic pressing method is disclosed wherein workpieces are accommodated within a high pressure vessel and the interior of the high pressure vessel is filled with an inert gas of a high temperature and a high pressure to treat the workpieces. The method includes a cooling step which is performed after maintaining the interior of the high pressure vessel at a high temperature and a high pressure for a predetermined time and in which a liquid inert gas is fed into the high pressure vessel. According to this method it is possible to shorten the cycle time of an HIP apparatus.
摘要:
In a high temperature/high pressure vessel for treating a workpiece placed in the interior of the vessel at a high temperature and a high pressure wherein piano wire is wound under tension round an outer periphery of a cylindrical body to apply a compressive residual stress to the cylindrical body and axial openings of the cylindrical body are tightly closed with upper and lower lids so that the lids can be disengaged from the openings, the cylindrical body is constituted as a two-layer cylindrical body comprising an inner cylinder and an outer cylinder which is fitted on the inner cylinder through plural spacers arranged along an outer periphery surface of the inner cylinder, allowing cooling water flow paths to be formed each between adjacent such spacers so as to extend from one end side to an opposite end side of the tow-layer cylindrical body. In this high temperature/high pressure vessel, vessel packings can be cooled effectively, the piano wire is not wet with cooling water, and the internal space of the vessel can be utilized effectively.