Abstract:
An exposure apparatus which projects and transfers a pattern formed on a mask to a substrate using exposure light includes a stage, an optical system, and a gas stream forming mechanism which forms a stream of inert gas in an optical path space including a space which is located between the stage and the optical system and through which the exposure light passes. In addition, a member forms a predetermined space between the optical path space and a peripheral space outside the optical path space in the exposure apparatus, and a gas supply mechanism supplies the inert gas into the predetermined space.
Abstract:
An exposure apparatus which projects and transfers a pattern formed on a mask to a substrate using exposure light includes a stage, an optical system, and a gas stream forming mechanism which forms a stream of inert gas in an optical path space including a space which is located between the stage and the optical system and through which the exposure light passes. In addition, a member forms a predetermined space between the optical path space and a peripheral space outside the optical path space in the exposure apparatus, and a gas supply mechanism supplies the inert gas into the predetermined space.
Abstract:
A deflection mirror is disposed before an X-ray mask so as to reflect an X-ray beam and to project it to the X-ray mask. The X-ray mask is disposed opposed to a wafer with a distance D therebetween, and the X-ray beam reflected by the X-ray mask is projected onto the wafer through a reduction projection optical system. The deflecting mirror is disposed, in an example, at a position satisfying a relation D>L>d/(tan .delta.1+tan .delta.2) where L is the distance from the X-ray mask to an edge of the deflection mirror closer to the path of the X-ray beam reflected by the X-ray mask, d is the width of irradiation of the X-ray beam upon the X-ray mask, and .delta.1 and .delta.2 are incidence angles of the X-ray beam at upper and lower edges of the irradiation width d, respectively, upon the X-ray mask. This assures a compact structure wherein, even when a wafer of a large diameter is used, illumination light to the mask is not intercepted.
Abstract:
A charged particle beam drawing apparatus includes an electrostatic lens including an electrode member and configured to project the plurality of charged particle beams onto the substrate via the electrode member. In the electrode member are formed a plurality of first openings via which the plurality of charged particle beams pass, and a plurality of second openings different from the plurality of first openings, a total area of the plurality of second openings being not smaller than a total area of the plurality of first openings.
Abstract:
An exposure apparatus that includes a chamber in which an optical element, including a capping layer, is arranged, and that exposes a substrate to exposure light via the optical element. The apparatus includes a supply unit configured to supply a material into the chamber and a providing unit configured to provide electromagnetic waves to the capping layer. The apparatus is configured so that the electromagnetic waves provided by the providing unit cause a photochemical reaction of the material, to grow a layer on the capping layer, with at least one of a condition of supply of the material by the supply unit and a condition of provision of the electromagnetic waves by the providing unit being changed in accordance with each position of the capping layer, based on information of a decrease in an amount of the capping layer at each position, so as to repair the capping layer.
Abstract:
An exposure apparatus exposes a substrate using light from a light source having a wavelength of 20 nm or smaller, and includes plural optical elements, each of which is configured to reflect the light, plural vacuum chambers, each of which houses one or more of the plural optical elements, and a gas supplier configured to supply to each vacuum chamber independently a gas used to inhibit contaminations that could occur on the optical element housed in each vacuum chamber, wherein the gas supplier supplies different types of gases to the plural vacuum chambers according to an illuminance of an illumined region on the optical element housed in each vacuum chamber.
Abstract:
To solve the problem, when the inside of an exposure apparatus is placed under vacuum, of a gas being emitted from a resin tube provided in the exposure apparatus, and a component of the gas adhering to and being deposited on the surface of an optical element, so that the optical performances of the optical element and the exposure apparatus are deteriorated, the exposure apparatus is provided with means for controlling the surface temperature of the resin tube in the exposure apparatus up to a predetermined temperature.
Abstract:
An exposure apparatus which projects and transfers a pattern formed on a mask to a substrate using exposure light includes a stage, an optical system, and a gas stream forming mechanism which forms a stream of inert gas in an optical path space including a space which is located between the stage and the optical system and through which the exposure light passes. In addition, a member forms a predetermined space between the optical path space and a peripheral space outside the optical path space in the exposure apparatus, and a gas supply mechanism supplies the inert gas into the predetermined space.
Abstract:
An exposure apparatus for exposing an object put on a first stage by irradiating light from a light source onto the object through an exposure optical system includes a partition for isolating a first space where the first stage is arranged and isolating a second space where the exposure optical system is arranged, a first management part that manages a degree of vacuum of the first space, and a second management part that manages a degree of vacuum of the second space.
Abstract:
An X-ray exposure apparatus includes a partition structure for defining therein an ambience of one of an atmospheric pressure and a reduced pressure, for accommodating an X-ray mask and an article to be exposed, an X-ray window provided on the partition structure for spatially isolating the inside of the partition structure and an X-ray source, and having a function for transmitting therethrough an X-ray beam with which the article as placed inside the partition structure can be exposed through the X-ray mask, and a scanning mechanism for scanningly moving the X-ray window in a direction intersecting with an optical axis of the X-ray beam, in a single exposure and without interruption at least from just before the start of the exposure to just after the end of the exposure.