摘要:
The biosensor of this invention can quantify a substrate in a sample liquid by electrochemically measuring the amount of an electron acceptor that has been reduced by electrons generated in a reaction between the substrate and an oxidoreductase. The biosensor has an electrically insulating substrate and an electrode system formed on the substrate including a working electrode, a counter electrode and a third electrode used for detecting a liquid junction. The third electrode can be used merely for detecting a liquid junction, or can be used as both a reference electrode and a liquid junction detecting electrode.
摘要:
The biosensor of this invention can quantify a substrate in a sample liquid by electrochemically measuring the amount of an electron acceptor that has been reduced by electrons generated in a reaction between the substrate and an oxidoreductase. The biosensor has an electrically insulating substrate and an electrode system formed on the substrate including a working electrode, a counter electrode and a third electrode used for detecting a liquid junction. The third electrode can be used merely for detecting a liquid junction, or can be used as both a reference electrode and a liquid junction detecting electrode.
摘要:
A biosensor for quantifying a specific compound has a reaction layer containing at least an enzyme, and an electrode system having a working electrode and a counter electrode formed on an insulating base plate; the biosensor detects the specific compound contained in a sample on the basis of an electrochemical response. In quantifying, the working electrode and the counter electrode are short-circuited before the voltage is applied therebetween. The short-circuiting eliminates measuring errors that may occur due to nonuniform dissolution of the reaction layer in a sample, and achieves highly reliable quantification of a specific compound.
摘要:
A biosensor of the present invention is provided with an insulating base plate, an electrode system mainly consisting of a working electrode and a counter electrode formed on the insulating base plate, and a reaction layer on the electrode system. The counter electrode is partially a circular arc. A manufacturing method of the biosensor of the present invention is comprised of a step to form a base by arranging leads, an electrode system, and an insulating layer on an insulating base plate, and a step to form a reaction layer mainly composed of an enzyme on the electrode system. Since the counter electrode is partially in the shape of a circular arc, the reaction layer is easily formed and prevented from delaminating, whereby the measuring accuracy, preservative properties and reliability of the biosensor are improved. The present invention enables highly efficient biosensors to be mass produced at low cost.
摘要:
The subject invention provides a simple sensor and an easy to handle biosensor measuring apparatus for the purpose of making measurements easily, rapidly and with high accuracy for specific components within a biological specimen such as blood.The biosensor of the subject invention is provided with a protrusion or a depression in a portion of a base having at least a measurement electrode and an opposing electrode. Also, the biosensor measuring apparatus is so configurated to have a mating means in the main body of the measuring apparatus freely supporting this biosensor to contact the said sensor's protrusion or depression, and further having the activating switch of the driving power supply located in this mating means.By means of these, it is possible to prevent wasteful measuring operations, as noted in the prior art biosensors, such as inserting the sensor backwards and making measurements with the sensor inserted backwards.
摘要:
A sensor 13 is inserted into a connector 14. A constant voltage required to obtain a response current is applied across the connector 14 by a voltage applying source 15 at timings required. A response current of the sensor 13 inserted into the connector 14 is converted into a voltage by a current-to-voltage converter 16, and the amount thereof is determined by a microcomputer, the analysis results being displayed onto a display unit.
摘要:
The present invention provides a high performance glucose sensor which can demonstrate high stability against preservation and produces only a low blank value. The glucose sensor comprises an electrically insulating base plate, an electrode system formed on the base plate, and a reaction layer which is formed in contact with or in the vicinity of the electrode system and contains at least a glucose dehydrogenase whose coenzyme is pyrrolo-quinoline quinone, the reaction layer further containing an additive such as phthalic acid.
摘要:
The present invention provides a high-performance glucose sensor having excellent storage stability and an improved response characteristic. This sensor comprises: an electrically insulating base plate; an electrode system including at least a working electrode and a counter electrode formed on the base plate; and a reaction layer containing at least pyrrolo-quinoline quinone dependent glucose dehydrogenase, formed in contact with or in the vicinity of the electrode system, and the reaction layer contains at least one kind of additive selected from the group consisting of gluconic acid and salts thereof.
摘要:
A biosensor includes: an insulating substrate; an electrode system formed on the insulating substrate which has a working electrode and a counter electrode; and a reaction layer formed on the insulating substrate which contains an oxidoreductase and an electron acceptor. The electron acceptor is ferricinium ion derived from ferrocene electrolyte.
摘要:
A method for determining the concentration of a substrate in a sample solution using an electrode system comprising a working electrode, a counter electrode, and a reaction layer which contains at least an oxidoreductase and an electron mediator and is formed on the electrode system to electrochemically measure a reduced amount of the electron mediator resulting from enzyme reaction in the reaction layer, wherein a third electrode is formed as an interfering substance detecting electrode. A current flowing between the counter electrode and the third electrode is measured which is taken as a positive error. Subsequently, voltage application between the counter electrode and the third electrode is released and a voltage for oxidizing the reduced form electron mediator is applied between the working electrode and the counter electrode to measure a current flowing between the two electrodes.