摘要:
The biosensor of this invention can quantify a substrate in a sample liquid by electrochemically measuring the amount of an electron acceptor that has been reduced by electrons generated in a reaction between the substrate and an oxidoreductase. The biosensor has an electrically insulating substrate and an electrode system formed on the substrate including a working electrode, a counter electrode and a third electrode used for detecting a liquid junction. The third electrode can be used merely for detecting a liquid junction, or can be used as both a reference electrode and a liquid junction detecting electrode.
摘要:
The biosensor of this invention can quantify a substrate in a sample liquid by electrochemically measuring the amount of an electron acceptor that has been reduced by electrons generated in a reaction between the substrate and an oxidoreductase. The biosensor has an electrically insulating substrate and an electrode system formed on the substrate including a working electrode, a counter electrode and a third electrode used for detecting a liquid junction. The third electrode can be used merely for detecting a liquid junction, or can be used as both a reference electrode and a liquid junction detecting electrode.
摘要:
A biosensor for quantifying a specific compound has a reaction layer containing at least an enzyme, and an electrode system having a working electrode and a counter electrode formed on an insulating base plate; the biosensor detects the specific compound contained in a sample on the basis of an electrochemical response. In quantifying, the working electrode and the counter electrode are short-circuited before the voltage is applied therebetween. The short-circuiting eliminates measuring errors that may occur due to nonuniform dissolution of the reaction layer in a sample, and achieves highly reliable quantification of a specific compound.
摘要:
A biosensor of the present invention is provided with an insulating base plate, an electrode system mainly consisting of a working electrode and a counter electrode formed on the insulating base plate, and a reaction layer on the electrode system. The counter electrode is partially a circular arc. A manufacturing method of the biosensor of the present invention is comprised of a step to form a base by arranging leads, an electrode system, and an insulating layer on an insulating base plate, and a step to form a reaction layer mainly composed of an enzyme on the electrode system. Since the counter electrode is partially in the shape of a circular arc, the reaction layer is easily formed and prevented from delaminating, whereby the measuring accuracy, preservative properties and reliability of the biosensor are improved. The present invention enables highly efficient biosensors to be mass produced at low cost.
摘要:
The present invention provides a high performance glucose sensor which can demonstrate high stability against preservation and produces only a low blank value. The glucose sensor comprises an electrically insulating base plate, an electrode system formed on the base plate, and a reaction layer which is formed in contact with or in the vicinity of the electrode system and contains at least a glucose dehydrogenase whose coenzyme is pyrrolo-quinoline quinone, the reaction layer further containing an additive such as phthalic acid.
摘要:
The present invention provides a high-performance glucose sensor having excellent storage stability and an improved response characteristic. This sensor comprises: an electrically insulating base plate; an electrode system including at least a working electrode and a counter electrode formed on the base plate; and a reaction layer containing at least pyrrolo-quinoline quinone dependent glucose dehydrogenase, formed in contact with or in the vicinity of the electrode system, and the reaction layer contains at least one kind of additive selected from the group consisting of gluconic acid and salts thereof.
摘要:
The present invention provides a process for more efficiently producing an α-hydroxycarboxylic acid ester wherein side reactions due to the α-hydroxycarboxylic acid ester are inhibited or prevented in comparison with prior art production processes.The invention provides a process for producing an α-hydroxycarboxylic acid ester comprising Steps 1 to 3:Step 1. reacting, in the presence of oxygen, (i) a 1,2-diol with a 1,2-diol or (ii) a 1,2-diol with an alcohol to obtain a reaction product containing an α-hydroxycarboxylic acid ester;Step 2. separating the α-hydroxycarboxylic acid ester from the reaction product obtained in Step 1 by distillation under reduced pressure; andStep 3. feeding Step 1 with a mixture obtained by partially or entirely removing water from the reaction product, wherein the mixture contains an unreacted 1,2-diol and/or alcohol.
摘要:
A method of producing a diol derivative efficiently and to high purity is provided. Specifically, the present invention relates to a method of producing a diol derivative having, as a fundamental step, a step of obtaining an α-hydroxycarboxylic acid ester by reacting (i) one or more 1,2-diols or (ii) a 1,2-diol and a primary alcohol as starting material(s) with oxygen in the presence of a catalyst comprising metal loaded on a carrier, further hydrolyzing the α-hydroxycarboxylic acid ester to obtain α-hydroxycarboxylic acid, and subjecting the α-hydroxycarboxylic acid to polycondensation.
摘要:
A method for purifying glyoxylates includes (1) a coarse distillation process in which a crude glyoxylate in which water coexists is, in a film form, continuously subjected to coarse distillation, and (2) an azeotropic dehydration process in which the crude glyoxylate purified through the coarse distillation process is subjected to azeotropic dehydration in the presence of an azeotropic agent such as propyl acetate. By this method, high-purity glyoxylates can be efficiently and easily obtained at lower costs.
摘要:
A glucose sensor system comprising the steps of using as a sample discriminating parameter a ratio (I/ΔI) of a measured current value I to the time-differential value of the current value ΔI, defining a discrimination function that discriminates whether a sample is blood or control fluid and uses the discriminating parameter as an independent variable, quantitating as a discriminating index a numeric value obtained by substituting a discriminating parameter value into this discrimination function, and automatically discriminating, based on this index, whether the sample is blood or a control fluid, whereby a kind of the sample can be automatically quantitated by measuring electric current when a sensor system is used for quantitating the concentration of an analysis object in the sample.