摘要:
A nonvolatile memory element includes a current steering element which bidirectionally rectifies current in response to applied voltage and a variable resistance element connected in series with the current steering element. The current steering element includes an MSM diode and an MSM diode which are connected in series and each of which bidirectionally rectifies current in response to applied voltage. The MSM diode and the MSM diode include a lower electrode, a first current steering layer, a first metal layer, a second current steering layer, and an upper electrode which are stacked in this order. The current steering element has a breakdown current which is larger than an initial breakdown current which flows in the variable resistance element at the time of initial breakdown.
摘要:
A variable resistance nonvolatile storage element includes: a first electrode; a second electrode; and a variable resistance layer having a resistance value that reversibly changes based on an electrical signal applied between the electrodes, wherein the variable resistance layer has a structure formed by stacking a first transition metal oxide layer, a second transition metal oxide layer, and a third transition metal oxide layer in this order, the first transition metal oxide layer having a composition expressed as MOx (where M is a transition metal and O is oxygen), the second transition metal oxide layer having a composition expressed as MOy (where x>y), and the third transition metal oxide layer having a composition expressed as MOz (where y>z).
摘要翻译:可变电阻非易失性存储元件包括:第一电极; 第二电极; 以及可变电阻层,其具有基于施加在所述电极之间的电信号而可逆地变化的电阻值,其中所述可变电阻层具有通过堆叠第一过渡金属氧化物层,第二过渡金属氧化物层和第三过渡金属氧化物层而形成的结构 过渡金属氧化物层,第一过渡金属氧化物层具有以MOx表示的组成(其中M是过渡金属,O是氧),第二过渡金属氧化物层具有以MOy表示的组成(其中x> y )和具有表示为MOz(其中y> z)的组成的第三过渡金属氧化物层。
摘要:
A variable resistance nonvolatile storage element includes: a first electrode; a second electrode; and a variable resistance layer having a resistance value that reversibly changes based on an electrical signal applied between the electrodes, wherein the variable resistance layer has a structure formed by stacking a first transition metal oxide layer, a second transition metal oxide layer, and a third transition metal oxide layer in this order, the first transition metal oxide layer having a composition expressed as MOx (where M is a transition metal and O is oxygen), the second transition metal oxide layer having a composition expressed as MOy (where x>y), and the third transition metal oxide layer having a composition expressed as MOz (where y>z).
摘要翻译:可变电阻非易失性存储元件包括:第一电极; 第二电极; 以及可变电阻层,其具有基于施加在所述电极之间的电信号而可逆地变化的电阻值,其中所述可变电阻层具有通过堆叠第一过渡金属氧化物层,第二过渡金属氧化物层和第三过渡金属氧化物层而形成的结构 过渡金属氧化物层,第一过渡金属氧化物层具有以MOx表示的组成(其中M是过渡金属,O是氧),第二过渡金属氧化物层具有以MOy表示的组成(其中x> y )和具有表示为MOz(其中y> z)的组成的第三过渡金属氧化物层。
摘要:
A nonvolatile memory element including: a first electrode; a second electrode; a variable resistance layer that is between the first electrode and the second electrode and includes, as stacked layers, a first variable resistance layer connected to the first electrode and a second variable resistance layer connected to the second electrode; and a side wall protecting layer that has oxygen barrier properties and covers a side surface of the variable resistance layer. The first variable resistance layer includes a first metal oxide and a third metal oxide formed around the first metal oxide and having an oxygen deficiency lower than that of the first metal oxide, and the second variable resistance layer includes a second metal oxide having an oxygen deficiency lower than that of the first metal oxide.
摘要:
Provided are a non-volatile memory element which can reduce a voltage of an electric pulse required for initial breakdown, and can lessen non-uniformity of a resistance value of the non-volatile memory element, and a non-volatile memory device including the non-volatile memory element. A non-volatile memory element comprises a first electrode (103); a second electrode (105); and a variable resistance layer (104) interposed between the first electrode (103) and the second electrode (105), a resistance value of the variable resistance layer being changeable reversibly in response to an electric signal applied between the first electrode (103) and the second electrode (105); wherein the variable resistance layer (104) includes a first region (106) which is in contact with the first electrode (103) and comprises an oxygen-deficient transition metal oxide and a second region (107) which is in contact with the second electrode (105) and comprises a transition metal oxide having a smaller degree of oxygen deficiency than the first region (106); and wherein the second electrode (105) comprises an alloy including iridium and at least one precious metal having lower Young's modulus than iridium, and a content of iridium is not less than 50 atm %.
摘要:
A nonvolatile memory element including: a first electrode; a second electrode; a variable resistance layer that is between the first electrode and the second electrode and includes, as stacked layers, a first variable resistance layer connected to the first electrode and a second variable resistance layer connected to the second electrode; and a side wall protecting layer that has oxygen barrier properties and covers a side surface of the variable resistance layer. The first variable resistance layer includes a first metal oxide and a third metal oxide formed around the first metal oxide and having an oxygen deficiency lower than that of the first metal oxide, and the second variable resistance layer includes a second metal oxide having an oxygen deficiency lower than that of the first metal oxide.
摘要:
A variable resistance element comprises, when M is a transition metal element, O is oxygen, and x and y are positive numbers satisfying y>x; a lower electrode; a first oxide layer formed on the lower electrode and comprising MOx when a content ratio of O with respect to M is x; a second oxide layer formed on the first oxide layer and comprising MOy when a content ratio of O with respect to M is y; an upper electrode formed on the second oxide layer; a protective layer formed on the upper electrode and comprising an electrically conductive material having a composition different from a composition of the upper electrode; an interlayer insulating layer formed to cover the protective layer; and an upper contact plug formed inside an upper contact hole penetrating the interlayer insulating layer.
摘要:
Provided is a method for manufacturing a variable resistance element, the method including: forming a first electrode material layer above a substrate; forming a first tantalum oxide material layer; forming a second tantalum oxide material layer; forming a second electrode material layer; and annealing at least the first tantalum oxide material layer after forming the first tantalum oxide material layer and before forming the second electrode material layer, wherein an oxygen content percentage of one of the first tantalum oxide material layer and the second tantalum oxide material layer is higher than an oxygen content percentage of the other.
摘要:
A semiconductor device includes an insulation layer (14) provided on a semiconductor substrate (12), a p-type semiconductor region (16) provided on the insulation layer, an isolation region (18) provided that surrounds the p-type semiconductor region to reach the insulation layer, an n-type source region (20) and an n-type drain region (22) provided on the p-type semiconductor region, a charge storage region (30) provided above the p-type semiconductor region between the n-type source region and the n-type drain region, and an voltage applying portion that applies a different voltage to the p-type semiconductor region while any of programming, erasing and reading a different data of a memory cell that has the charge storage region is being preformed.
摘要:
Devices and methods for isolating adjacent charge accumulation layers in a semiconductor device are disclosed. In one embodiment, a semiconductor device comprises a bit line formed in a semiconductor substrate, a charge accumulation layer formed on the semiconductor substrate, a word line formed on the charge accumulation layer across the bit line, and a channel region formed in the semiconductor substrate below the word line and between the bit line and its adjacent bit line. For the semiconductor device, the charge accumulation layer is formed above the channel region in a widthwise direction of the word line, and a width of the word line is set to be narrower than a distance between an end of the channel region and a central part of the channel region in a lengthwise direction of the word line.