摘要:
An object of the present invention is to increase the light emission efficiency of a ZnO-based optical semiconductor device. An optical semiconductor device B has a structure which includes n-type Zn1-zMgzO (barrier layer) 11/Zn1-zMgxO (active layer) 15/p-type Zn1-yMgyO (barrier layer) 17, and light is emitted from the active layer 15. Electrodes 23, 21 are respectively formed on barrier layers 11, 17. By applying a voltage between the two electrodes 23, 21, light is emitted from ZnO (active layer) 15. Here, there are a relationship of x
摘要:
A solar cell which comprises a back metal electrode and a light-absorbing layer comprising a p-type CIGS semiconductor on a substrate in this order, wherein the solar cell further comprises a p-type or low carrier concentration n-type semiconductor layer comprising ZnO between the light-absorbing layer and the back metal electrode, and a process for producing the solar cell.
摘要:
A method for producing a semiconductor film having a chalcopyrite structure including a Ib group element, a IIIb group element and a VIb group element including selenium, the method including cracking selenium with plasma to generate radical selenium, and using the radical selenium in the process of forming the semiconductor film.
摘要:
An object of the present invention is to increase the light emission efficiency of a ZnO-based optical semiconductor device. An optical semiconductor device B has a structure which includes n-type Zn1-zMgzO (barrier layer) 11/Zn1-zMgxO (active layer) 15/p-type Zn1-yMgyO (barrier layer) 17, and light is emitted from the active layer 15. Electrodes 23, 21 are respectively formed on barrier layers 11, 17. By applying a voltage between the two electrodes 23, 21, light is emitted from ZnO (active layer) 15. Here, there are a relationship of x
摘要:
A solid state imaging device with an easy structure in which have the high sensitivity which reaches the wide wavelength region from visible light to near infrared light wavelength region, and dark current is reduced, and a fabrication method for the same, are provided.A solid state imaging device and a fabrication method for the same, the solid state imaging device comprising: a circuit unit formed on a substrate; and a photoelectric conversion unit including a lower electrode layer placed on the circuit unit, a compound semiconductor thin film of chalcopyrite structure which is placed on the lower electrode layer and functions as an optical absorption layer, and an optical transparent electrode layer placed on the compound semiconductor thin film, wherein the lower electrode layer, the compound semiconductor thin film, and the optical transparent electrode layer are laminated one after another on the circuit unit.
摘要:
Disclosed is a method for manufacturing a photoelectric converter wherein a lower electrode layer, a compound semiconductor thin film having a chalcopyrite structure which serves as a light absorptive layer and a light-transmitting electrode layer that are laminated to form layers are each patterned by photolithography, thereby minimizing damages to the crystals of the compound semiconductor thin film.
摘要:
A photoelectric conversion device has a high S/N ratio and can increase the detection efficiency even under a low luminance. The photoelectric conversion device generates an increased electric charge by impact ionization in a photoelectric conversion unit formed from a chalcopyrite type semiconductor, so as to improve dark current characteristic. The photoelectric conversion device includes: a lower electrode layer; a compound semiconductor thin film of chalcopyrite structure disposed on the lower electrode layer and having a high resistivity layer on a surface; and a transparent electrode layer disposed on the compound semiconductor thin film , wherein the lower electrode layer, the compound semiconductor thin film, and the transparent electrode layer are laminated one after another, and a reverse bias voltage is applied between the transparent electrode layer and the lower electrode layer, and the multiplication by the impact ionization of the electric charge generated by photoelectric conversion is generated within the compound semiconductor thin film. It is also possible to provide a fabrication method for such photoelectric conversion device, and a solid state imaging device using the photoelectric conversion device.
摘要:
A solid state imaging device with an easy structure in which have the high sensitivity which reaches the wide wavelength region from visible light to near infrared light wavelength region, and dark current is reduced, and a fabrication method for the same, are provided.A solid state imaging device and a fabrication method for the same, the solid state imaging device comprising: a circuit unit (30) formed on a substrate; and a photoelectric conversion unit (28) including a lower electrode layer (25) placed on the circuit unit (30), a compound semiconductor thin film (24) of chalcopyrite structure which is placed on the lower electrode layer (25) and functions as an optical absorption layer, and an optical transparent electrode layer (26) placed on the compound semiconductor thin film (24), wherein the lower electrode layer (25), the compound semiconductor thin film (24), and the optical transparent electrode layer (26) are laminated one after another on the circuit unit (30).
摘要:
A photoelectric converter includes a lower electrode layer, a compound semiconductor thin film of a chalcopyrite structure functioning as a photoabsorption layer and a light transmitting electrode layer that are sequentially laminated on a substrate. An end portion of the of compound semiconductor thin film is positioned outward beyond an end of the light transmitting electrode layer.
摘要:
A photoelectric conversion device has a high S/N ratio and can increase the detection efficiency even under a low luminance. The photoelectric conversion device generates an increased electric charge by impact ionization in a photoelectric conversion unit formed from a chalcopyrite type semiconductor, so as to improve dark current characteristic. The photoelectric conversion device includes: a lower electrode layer; a compound semiconductor thin film of chalcopyrite structure disposed on the lower electrode layer and having a high resistivity layer on a surface; and a transparent electrode layer disposed on the compound semiconductor thin film, wherein the lower electrode layer, the compound semiconductor thin film, and the transparent electrode layer are laminated one after another, and a reverse bias voltage is applied between the transparent electrode layer and the lower electrode layer, and the multiplication by the impact ionization of the electric charge generated by photoelectric conversion is generated within the compound semiconductor thin film. It is also possible to provide a fabrication method for such photoelectric conversion device, and a solid state imaging device using the photoelectric conversion device.