摘要:
A solid state imaging device with an easy structure in which have the high sensitivity which reaches the wide wavelength region from visible light to near infrared light wavelength region, and dark current is reduced, and a fabrication method for the same, are provided.A solid state imaging device and a fabrication method for the same, the solid state imaging device comprising: a circuit unit (30) formed on a substrate; and a photoelectric conversion unit (28) including a lower electrode layer (25) placed on the circuit unit (30), a compound semiconductor thin film (24) of chalcopyrite structure which is placed on the lower electrode layer (25) and functions as an optical absorption layer, and an optical transparent electrode layer (26) placed on the compound semiconductor thin film (24), wherein the lower electrode layer (25), the compound semiconductor thin film (24), and the optical transparent electrode layer (26) are laminated one after another on the circuit unit (30).
摘要:
A photoelectric converter includes a lower electrode layer, a compound semiconductor thin film of a chalcopyrite structure functioning as a photoabsorption layer and a light transmitting electrode layer that are sequentially laminated on a substrate. An end portion of the of compound semiconductor thin film is positioned outward beyond an end of the light transmitting electrode layer.
摘要:
A solid state imaging device with an easy structure in which have the high sensitivity which reaches the wide wavelength region from visible light to near infrared light wavelength region, and dark current is reduced, and a fabrication method for the same, are provided.A solid state imaging device and a fabrication method for the same, the solid state imaging device comprising: a circuit unit formed on a substrate; and a photoelectric conversion unit including a lower electrode layer placed on the circuit unit, a compound semiconductor thin film of chalcopyrite structure which is placed on the lower electrode layer and functions as an optical absorption layer, and an optical transparent electrode layer placed on the compound semiconductor thin film, wherein the lower electrode layer, the compound semiconductor thin film, and the optical transparent electrode layer are laminated one after another on the circuit unit.
摘要:
Disclosed is a method for manufacturing a photoelectric converter wherein a lower electrode layer, a compound semiconductor thin film having a chalcopyrite structure which serves as a light absorptive layer and a light-transmitting electrode layer that are laminated to form layers are each patterned by photolithography, thereby minimizing damages to the crystals of the compound semiconductor thin film.
摘要:
A photoelectric conversion device has a high S/N ratio and can increase the detection efficiency even under a low luminance. The photoelectric conversion device generates an increased electric charge by impact ionization in a photoelectric conversion unit formed from a chalcopyrite type semiconductor, so as to improve dark current characteristic. The photoelectric conversion device includes: a lower electrode layer; a compound semiconductor thin film of chalcopyrite structure disposed on the lower electrode layer and having a high resistivity layer on a surface; and a transparent electrode layer disposed on the compound semiconductor thin film, wherein the lower electrode layer, the compound semiconductor thin film, and the transparent electrode layer are laminated one after another, and a reverse bias voltage is applied between the transparent electrode layer and the lower electrode layer, and the multiplication by the impact ionization of the electric charge generated by photoelectric conversion is generated within the compound semiconductor thin film. It is also possible to provide a fabrication method for such photoelectric conversion device, and a solid state imaging device using the photoelectric conversion device.
摘要:
A photoelectric conversion device has a high S/N ratio and can increase the detection efficiency even under a low luminance. The photoelectric conversion device generates an increased electric charge by impact ionization in a photoelectric conversion unit formed from a chalcopyrite type semiconductor, so as to improve dark current characteristic. The photoelectric conversion device includes: a lower electrode layer; a compound semiconductor thin film of chalcopyrite structure disposed on the lower electrode layer and having a high resistivity layer on a surface; and a transparent electrode layer disposed on the compound semiconductor thin film , wherein the lower electrode layer, the compound semiconductor thin film, and the transparent electrode layer are laminated one after another, and a reverse bias voltage is applied between the transparent electrode layer and the lower electrode layer, and the multiplication by the impact ionization of the electric charge generated by photoelectric conversion is generated within the compound semiconductor thin film. It is also possible to provide a fabrication method for such photoelectric conversion device, and a solid state imaging device using the photoelectric conversion device.
摘要:
A light-absorbing layer is composed of a compound-semiconductor film of charcopyrite structure, a surface layer is disposed on the light-absorbing layer, the surface layer having a higher band gap energy than the compound-semiconductor film, an upper electrode layer is disposed on the surface layer, and a lower electrode layer is disposed on a backside of the light-absorbing layer in opposition to the upper electrode layer, the upper electrode layer and the lower electrode layer having a reverse bias voltage applied in between to detect electric charges produced by photoelectric conversion in the compound-semiconductor film, as electric charges due to photoelectric conversion are multiplied by impact ionization, while the multiplication by impact ionization of electric charges is induced by application of a high-intensity electric field to a semiconductor of charcopyrite structure, allowing for an improved dark-current property, and an enhanced efficiency even in detection of low illumination intensities, with an enhanced S/N ratio.
摘要:
For reflow soldering, radiant heating is applied to one surface of a printed circuit board on which electronic components are placed and onto which cream solder is supplied and at the same time hot air is blown locally and roughly perpendicular to to-be-connected points on said one surface of the printed circuit board. This reflow method permits secure soldering even if the hot air is set at a temperature not exceeding the heat resistance of the electronic components, which is possilbe because of its combination with the radiant heat. Moreover, this reflow method can permit soldering in such a manner that only the to-be-connected points are heated selectively, because the hot air is blown locally and roughly perpendicular to the points to be connected. Thus, this reflow method prevents heat damage to other sections than the to-be-connected points and ensures that the solder at the to-be-connected points is melted.
摘要:
In a microcomputer with built-in SOG region system debugging is made possible using a gate array provided outside the microcomputer by supplying signals transferred between a CPU and the gate array to external terminals used for transferring signals between the interior of the microcomputer and a peripheral device outside the microcomputer. In order to supply necessary signals to the gate array connected to the external terminals, a selection circuit which outputs signals between CPU and the SOG region to the external terminals by means of a mode switching signal is provided. By the provision of the selection circuit, it becomes possible to output the signals between the CPU and the SOG region to the external terminals by switching, and to transmit the signals of CPU to the gate array provided outside the microcomputer. Accordingly, it becomes possible to debug the system using the gate array provided outside the microcomputer.
摘要:
A memory device includes a memory, an address latch, a built-in incrementer, and an address decoder. The address decoder has a mapping register which assigns the memory to a predetermined address. The address decoder further includes a standby signal producer which detects whether or not the address latch addresses an address specified by the mapping register and which sets the memory device to a standby state of a low power consumption when such is not detected. The memory device can be set to a standby state even when the memory device is connected to a microcomputer with a protocol by which an address of the memory is not outputted each time. This arrangement enables to save power consumption of the computer, to decrease the load of a power supply circuit in a microcomputer applied apparatus and to make the apparatus compact.