摘要:
A magnetoresistive effect type reproducing head is formed by stacking a lower magnetic shield made of magnetic material, a lower inter-layer insulation film, a magnetoresistive effect type element for detecting a magnetic field by using a magnetoresistive effect, an upper inter-layer insulation film, and an upper magnetic shield made of magnetic material, on a substrate in this order, wherein the resistivity of at least one of the lower and upper magnetic shields is more than 200 &mgr;&OHgr;·cm.
摘要:
A magnetoresistive effect type reproducing head is formed by stacking a lower magnetic shield made of magnetic material, a lower inter-layer insulation film, a magnetoresistive effect type element for detecting magnetic field by using a magnetoresistive effect, an upper inter-layer insulation film, and an upper magnetic shield made of magnetic material, on a substrate in this order, wherein a resistivity of at least one of the lower and upper magnetic shields is more than 200 &mgr;&OHgr;·cm.
摘要:
A magnetoresistive effect type reproducing head includes a lower magnetic shield made of magnetic material, an upper magnetic shield made of magnetic material, a magnetoresistive effect type element formed between the lower magnetic shield layer and the upper magnetic shield layer, a lower inter-layer insulating film formed between the magnetoresistive effect type element and the lower magnetic shield, and an upper inter-layer insulation film formed between the magnetoresistive effect type element and the upper magnetic shield. At least one of the lower and upper magnetic shields includes a first magnetic layer made of a first material having first electric resistivity and a second magnetic layer made of a second material having second electric resistivity higher than the first electric resistivity.
摘要:
A magnetoresistive effect type reproducing head is formed by stacking a lower magnetic shield made of magnetic material, a lower inter-layer insulation film, a magnetoresistive effect type element for detecting magnetic field by using a magnetoresistive effect, an upper inter-layer insulation film, and an upper magnetic shield made of magnetic material, on a substrate in this order, wherein a resistivity of at least one of the lower and upper magnetic shields is more than 200 &mgr;&OHgr;·cm.
摘要:
In order to prevent degradation of the recording performance during radio frequency recording, and to provide a thin film magnetic head and a recording reproducing sectional pattern magnetic head which has a magnetic pole width less than 2 .mu.m and an ultra high density magnetic storage apparatus of 10 Gb/ in.sup.2 grade, a recording head is provided in which a lower part magnetic film serves as a shielding film of a reproducing selection, a non magnetic gap film is formed during formation of the upper part magnetic film and the lower part magnetic film, one part of the lower part magnetic film or the upper part magnetic film has a higher resistivity of more than 80 .mu..OMEGA.cm than other parts, the upper part magnetic film is formed by flame galvanizing, and a gap section of the lower part magnetic film or the upper part magnetic film has a convex shape.
摘要:
According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp2>tp1 is satisfied when a thickness of the first pinning layer is tp1, and a thickness of the second pinning layer is tp2. In another embodiment, the first and second magnetoresistive effect elements may be CPP-GMR elements. Other elements, heads, and magnetic recording/reading devices are described according to other embodiments.
摘要:
According to one embodiment, a magnetoresistive effect head includes a magnetically pinned layer having a direction of magnetization that is pinned, a free magnetic layer positioned above the magnetically pinned layer, the free magnetic layer having a direction of magnetization that is free to vary, and a barrier layer comprising an insulator positioned between the magnetically pinned layer and the free magnetic layer, wherein at least one of the magnetically pinned layer and the free magnetic layer has a layered structure, the layered structure including a crystal layer comprising one of: a CoFe magnetic layer or a CoFeB magnetic layer and an amorphous magnetic layer comprising CoFeB and an element selected from: Ta, Hf, Zr, and Nb, wherein the crystal layer is positioned closer to a tunnel barrier layer than the amorphous magnetic layer. In another embodiment, a magnetic data storage system includes the magnetoresistive effect head described above.
摘要:
According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp2>tp1 is satisfied when a thickness of the first pinning layer is tp1, and a thickness of the second pinning layer is tp2. In another embodiment, the first and second magnetoresistive effect elements may be CPP-GMR elements. Other elements, heads, and magnetic recording/reading devices are described according to other embodiments.
摘要:
Embodiments of the invention provide a spin-valve type magnetic head that satisfies the requirements of both high read output and stability with narrow tracks. In one embodiment, a domain control film is formed on a magnetoresistive layered film in the same track width. A double closed flux path structure that uses three magnetic layers is employed with magnetic coupled structure in both ends of the track. The three magnetic layers are a soft magnetic free layer, a domain-stabilization ferromagnetic layer, and a soft magnetic anti-parallel layer.
摘要:
A spin-valve type magnetic head which has sufficiently high output is provided. In one embodiment, a structure in which high output coexists with high stability is achieved by letting a GMR-effect and a current-path-confinement effect manifest themselves at the same time in a GMR-screen layer consisting of a ferromagnetic metal spike-like part and a half-covering oxide layer.